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ABSTRACT

 Resveratrol, a natural polyphenol compound found in red wine, the skins of 

grapes, and other plant products, has been used as a traditional medicine for thousands of 

years throughout human history, but current research has revealed this natural component 

is capable of modulating a variety of immunological, microbial, and epigenetic 

mechanisms to improve overall health and well-being of hosts that consume it. Colitis, an 

inflammatory bowel disease characterized by chronic inflammation in the colon and 

rectum, which has been associated with colon cancer.  This cancer incidence is rising in 

younger adults in the US.  Thus, newer approaches to prevent colitis and colon cancer are 

critical.  In this dissertation, data and evidence is presented which demonstrate that 

resveratrol, natural polyphenol can attenuate murine models of colitis and prevent colitis-

associated colon cancer.  In addition, in-depth mechanistic studies will provide evidence 

that resveratrol suppresses inflammation in the colon by regulating the host-gut 

microbiome, as well as inducing epigenetic changes via modulation of small noncoding 

RNA molecules that target key gene transcripts involved in key immunologic processes. 
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CHAPTER 1 

INTRODUCTION

1.1 COLITIS AND COLITIS-ASSOCIATED COLON CANCER 

Inflammatory bowel diseases (IBDs), such as ulcerative colitis (UC) and Crohn’s 

disease (CD), are chronic digestive diseases defined by often uncontrollable 

inflammation along the gastrointestinal tract and colon (Singh et al., 2014b). The 

incidence and prevalence of these diseases has risen since 1980 in many parts of the 

world, particularly in the United States (Molodecky et al., 2012), and there is an alarming 

trend of these diseases increasing in the pediatric population (Ong et al., 2018; Sykora et 

al., 2018). Even more concerning is the link between colitis and an increased 

susceptibility to developing colorectal cancer (CRC) in animal models and the human 

patient population (Al Bakir et al., 2018; Foersch et al., 2012; Yang et al., 2018a). Colitis, 

as a form of IBD, has a complex etiology often attributed to many interrelated genetic, 

dietary, and other environmental factors (Hart, 2019; Mikhailov and Furner, 2009). 

Current conventional treatment options (e.g. steroids and immunosuppressive drugs) 

often have adverse side-effects, or in some cases, colitis patients are non-responsive to 

these conventional therapies (Antonelli et al., 2018). With increasing incidence, a link to 

development of CRC, and lack of effective treatment options, more studies are focusing 

on preventative measures to decrease colitis incidence. 

Recent advances in next-generation sequencing technology have shown that IBD 

may also result from alterations in the composition and function of gut microbiota, 
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referred to as dysbiosis. The gut microbiota also interact closely with dietary components 

to maintain normal immune system homeostasis in the gut.  Whether dietary supplements 

that are effective against colonic inflammation mediate their effects through modulation 

of gut microbiota is an area of investigation that is novel and highly significant. 

Colorectal cancer (CRC), which is characterized by tumor development in the 

large intestine, ranks as third among cancer incidences and fourth in cancer-related 

mortalities worldwide (Global Burden of Disease Cancer et al., 2015). Despite an overall 

decrease in CRC incidence in the United States among all race and ethnic groups due to 

standardized screening guidelines (Edwards et al., 2014), there has been a rise in 

prevalence of this disease among young adult patients which prompted the American 

Cancer Society to suggest the recommended age for CRC screening be lowered from 50 

to 45 (Pittman, 2018). Even with conventional chemotherapy options, which have major 

negative side-effects, patients often show chemo-resistance (Bose et al., 2011). It is for 

this reason, the emphasis has been on prevention of CRC development and regular 

screening to detect and cure at an early stage.  CRC development, is also associated with 

chronic inflammation and high levels of circulating inflammatory biomakers (Lopez et 

al., 2018; Song et al., 2018). Recent reports have shown that inflammation induced by 

certain types of diet and alterations in the microbiome is associated with increased risk of 

CRC development in men and women (Liu et al., 2018; Tabung et al., 2018). By the 

same token, diet and life styles that promote chronic inflammation in the gut is associated 

with dysregulation in the microbiome and development of colon tumorigenesis (Chen et 

al., 2017; Song et al., 2015).  Together, such studies suggest that use of preventative 
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agents against colonic inflammation, or colitis, could be beneficial in reducing the 

incidence of CRC.  

1.2 RESVERATROL 

Resveratrol (3,4,5-trihydroxy-trans-stilbene) is a natural polyphenol produced by 

several plants in response to injury or when the plant is under attack by pathogens such as 

bacteria or fungi (Singh et al., 2007). Resveratrol has been extensively studied for its 

therapeutic benefits against a wide array of diseases including cancer, cardiovascular, 

neurological and inflammatory diseases (Altamemi et al., 2014; Cui et al., 2010; de la 

Lastra and Villegas, 2005; Guan et al., 2012; Rieder et al., 2012; Singh et al., 2007; Singh 

et al., 2010; Wu et al., 2005). Resveratrol mediates these anti-inflammatory effects 

through multiple pathways (Rieder et al., 2012). For example, resveratrol has been shown 

to attenuate colitis by upregulating of silent mating type information regulation-1 

(SIRT1) in immune cells which is associated with the T regulatory cells (Treg) induction 

and activation of hypoxia-inducible Factor 1α (HIF-1α)/MTor signaling pathway (Singh 

et al., 2010; Yao et al., 2015). Resveratrol has also been shown to induce unique 

microRNA that trigger anti-inflammatory pathways as well as induce myeloid-derived 

suppressor cells (MDSCs) (Altamemi et al., 2014; Cui et al., 2010; Singh et al., 2010; 

Singh et al., 2012). While resveratrol has been shown to alter the gut microbiome in 

various disease models (Diaz-Gerevini et al., 2016; Etxeberria et al., 2015; Jung et al., 

2016; Tung et al., 2016), these studies have captured only an association between 

resveratrol-induced modulations in gut microbiota and the disease outcome.  Thus, 

conclusive evidence, such as through fecal transfer, is lacking to connect resveratrol-
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induced modulation in gut microbiota and its beneficial effects against disease 

pathogenesis. 

In addition, resveratrol has been shown to be a  promising preventive measure  to 

suppress chronic inflammation leading to tumor development (Busbee et al., 2013). 

Resveratrol has already been shown by our lab, as well as others, to possess a myriad of 

anti-cancer effects, including those related to CRC. This natural compound has been 

shown to be effective at preventing the proliferation and survival of human CRC cells as 

well decrease CRC disease severity and tumor development in relevant animal CRC 

models (Busbee et al., 2013; Elshaer et al., 2018; Hofseth et al., 2010). Some of the 

mechanisms by which resveratrol has been shown to prevent colon cancer cell 

proliferation and invasion metastasis include regulation of key cellular signaling 

pathways such as NF-Κb-dependent cellular processes (Buhrmann et al., 2017), 

PI3K/Akt signaling (Zeng et al., 2017), modulation of histones and sirtuins (San 

Hipolito-Luengo et al., 2017), inhibition of cyclooxygenase-2 (Cox-2) expression (Gong 

et al., 2017), and alterations in gene-regulating microRNAs (miR) (Yang et al., 2015). 

Previous reports from our lab have shown that resveratrol is able to alter expression of 

certain miRs (miR-101b and miR-455) that target inflammatory mediators such as 

interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and COX-2 in the dextran 

sodium sulfate (DSS)-induced colitis-associated tumorigenesis Apc(Min/+) mouse model 

(Altamemi et al., 2014). In addition, in the AOM/DSS CRC model, we have shown that 

resveratrol downregulates inflammatory stress markers such as p53 to modulate the T cell 

response (Cui et al., 2010). However, while the regulation of these host-derived cellular 

mechanisms play an important role in resveratrol-mediated CRC treatment, recent 
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research has shown the gut microbiome is also a key player in both CRC disease 

development and progression (Chen, 2018).  Nonetheless, whether the ability of 

resveratrol to suppress CRC is related to its action on gut microbiota remains a possibility 

that needs to be explored.  

1.3 THE GUT MICROBIOME 

The gut microbiome, a diverse ecosystem consisting of gut commensals including 

bacteria and fungi, has been shown to have a great impact on human health and disease, 

particularly in CRC (Jobin, 2017; Rezasoltani et al., 2017; Zou et al., 2018). For example, 

patients diagnosed with CRC were found to have distinct microbiome profiles compared 

to healthy controls, and this microbial signature was found to be altered after treatment 

with probiotics (Hibberd et al., 2017). Interestingly, after oral administration of 

antibiotics to deplete the gut microbiome, tumor burden was decreased in a CRC murine 

model, but this effect was negated in Rag-deficient mice that lacked mature T cells and B 

cells (Sethi et al., 2018). This study highlights the importance of the interplay between 

the host immune defense the microbiome. While resveratrol has been shown to modulate 

the host immune response to promote anti-inflammation as previously discussed and has 

been shown to alter the microbiome in other disease models (Chen et al., 2016; Kim et 

al., 2018; Qiao et al., 2014; Zhao et al., 2017), there currently are no reports determining 

if resveratrol-mediated alterations in the gut microbiome can influence the immune 

response to protect against CRC development caused by chronic colitis.  

1.4 MICRORNA  

microRNA (miRNA or miR) are small 18-25 nucleotide non-coding RNAs that 

regulate the expression of several protein-encoding genes post-transcriptionally by either 
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inhibiting translation of targeted-miR or leading to the degradation of certain targeted-

mRNA transcripts, and even though they make up only 3% of the human genome, it has 

been estimated that these non-coding RNAs regulate around 90% of genes  (Guo et al., 

2018). Canonical miR biogenesis begins in the nucleus when miR genes are transcribed 

by either RNA polymerase II or III to produce primary miRNA transcripts (pri-miRNAs).  

While still in the nucleus, pri-miRNA is cleaved by a class 2 RNAase III enzyme, called 

Drosha, to create a 60-70 nucleotide hairpin structured precursor (pre-miRNA).  The pre-

RNA is then shuttled from the nucleus to the cytoplasm by Exportin 5 (Exp5), where it is 

released by Exp5 when GTP on the Exp5-associated Ran cofactor is converted to GDP.   

While in the cytoplasm, another RNase called dicer cleaves pre-miRNA into a duplex 

intermediate.  The duplex intermediate is bound to an Argonaute (AGO) protein to form a 

AGO:mature miRNA strand complex, where one strand of the intermediate is discarded 

(Catalanotto et al., 2016).  

miRs were found to be important in both the development and progression of 

colitis, particularly in terms of regulating inflammation, serving as disease biomarkers, 

and responding to therapies (Feng et al., 2018; Lopetuso et al., 2018; Minacapelli et al., 

2019; Morilla et al., 2018; Schonauen et al., 2018; Singh et al., 2014a). The importance 

of miRs in regulating colitis was highlighted in our previous report showing that 

deficiency in only one miR (miR-155) was able to protect mice from developing severe 

colitis symptoms by a reduction in the inflammatory T helper (Th) type responses (Singh 

et al., 2014a). 
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1.5 PROBLEM AND HYPOTHESIS 

IBD patients represent a high risk group for developing colitis-associated CRC, 

and these diseases, which currently has no cure, result in an overall decrease in quality of 

life and an increase in health care costs. There is need to seek out new and novel 

treatments to combat the inflammatory response initiated by colitis and colitis-associated 

colorectal cancer.  Therefore, we examined how the use of natural product, resveratrol, 

could prevent colitis-induced T cell activation and inflammation which could lead to 

colorectal cancer.  Based on recent findings that resveratrol has anti-inflammatory and 

anti-microbial properties, we hypothesized that resveratrol would be a novel treatment for 

colitis and colitis-associated CRC in relevant mouse models through alterations in gut 

microbiota and regulating certain miRs during inflammation.
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CHAPTER 2

RESVERATROL MODULATES THE GUT MICROBIOTA TO PREVENT MURINE 

COLITIS DEVELOPMENT THROUGH INDUCTION OF TREGS AND SUPPRESSION OF 

TH17 CELLS 

2.1 ABSTRACT 

Inflammatory diseases of the gastrointestinal tract are often associated with 

microbial dysbiosis. Thus, dietary interactions with intestinal microbiota, to maintain 

homeostasis, play a crucial role in regulation of clinical disorders such as colitis. In the 

current study, we investigated if resveratrol, a polyphenol found in a variety of foods and 

beverages, would reverse microbial dysbiosis induced during colitis. Administration of 

resveratrol attenuated colonic inflammation and clinical symptoms in the murine model 

of TNBS-induced colitis. Resveratrol treatment in mice with colitis led to an increase in 

CD4+FOXP3+ and CD4+IL-10+ T cells, and a decrease in CD4+IFN-γ+ and CD4+IL-

17+ T cells. 16S rRNA gene sequencing to investigate alterations in the gut microbiota 

revealed that TNBS caused significant dybiosis, which was reversed following 

resveratrol treatment. Analysis of cecal flush revealed that TNBS administration led to an 

increase in species such as Bacteroides acidifaciens, but decrease in species such as 

Ruminococcus gnavus and Akkermansia mucinphilia, as well as a decrease in SCFA i-

butyric acid. However, resveratrol treatment restored the gut bacteria back to homeostatic 

levels, and increased production of i-butyric acid. Fecal transfer experiments confirmed 

the protective role of resveratrol-induced microbiota against colitis inasmuch as such 
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recipient mice were more resistant to TNBS-colitis and exhibited polarization towards 

CD4+FOXP3+ T cells and decreases in CD4+IFN-γ+ and CD4+IL-17+ T cells. 

Collectively, these data demonstrate that resveratrol-mediated attenuation of colitis 

results from reversal of microbial dysbiosis induced during colitis and such microbiota 

protect the host from colonic inflammation by inducing Tregs while suppressing 

inflammatory Th1/Th17 cells. 

2.2 INTRODUCTION 

 Here, we demonstrate that during colitis, microbial dysbiosis takes place in the 

host, which leads to the activation and differentiation of inflammatory effector T cells 

and inhibition of Tregs. However, upon treatment with resveratrol, these changes are 

reversed, leading to the development of an anti-inflammatory Treg response. More 

importantly, we conclusively prove that this mechanism is driven by resveratrol-mediated 

alterations in the gut microbiome by performing fecal transplant experiments, thereby not 

only reinforcing the notion that resveratrol is a potential therapeutic against colitis, but 

also providing a key mechanism through which resveratrol mediates its effects. 

2.3 MATERIALS AND METHODS 

Animals. Female BALB/c mice (aged 6-8 weeks) were purchased from the 

Jackson Laboratories (Bar Harbor, ME). All mice were housed at the AAALAC-

accredited animal facility at the University of South Carolina, School of Medicine 

(Columbia, SC).  All procedures were performed according to NIH guidelines under 

protocols approved by the Institutional Animal Care and Use Committee. 

Effects of resveratrol on colitis in mice.  To test the efficacy of treatment with 

resveratrol in an in vivo TNBS-induced colitis mouse model, we used TNBS, purchased 
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from Sigma-Aldrich (St. Louis, MO). After lightly anesthetizing the mice with controlled 

isoflurane vaporizer chamber (5% isoflurane with 75% CO2/25% O2), TNBS was 

administered  intrarectally one time  into female BALB/c mice at a dose of 1 mg 

dissolved 0.1 ml of 50% ethanol using a 38 mm catheter, as previously reported (Elson et 

al., 1996).  For treatment groups resveratrol, purchased from Sigma-Aldrich (St. Louis, 

MO), was administered orally using a 30 mm oral gavage needle at 100 mg/kg, a dose 

established in our previous studies (Singh et al., 2010), in a total volume of 100µl in 

appropriate vehicle of 1% carboxymethyl cellulose (CMC).  Resveratrol was given 24 

hours prior to TNBS injection and given daily this way until completion of the 

experiment (5 days). Two control groups were used for this study. One control group 

only received appropriate vehicle (CMC), while the other control group received 100 

mg/kg resveratrol dissolved in CMC vehicle. Neither of these control groups received 

injection of TNBS. The evaluation of colitis clinical signs was done by measuring the 

weight of mice in all groups daily and performing colonoscopy every other day after 

TNBS-colitis induction. Colonoscopy scores were determined using a scoring system 

previously published (Kodani et al., 2013). In addition, blood was collected prior to 

experimental endpoint and serum samples were separated and stored at -20°C for colitis-

associated biomarker detection. All experimental mice studied were also given intrarectal 

injections of 50% ethanol to ensure changes in the gut were due to either TNBS or 

treatment and not attributed to alterations by ethanol. Resveratrol efficacy was also tested 

in the dextran sodium sulfate (DSS) model of colitis. DSS (3%) was used to induce 

disease as previously reported (Cui et al., 2010), and treatment groups (DSS+Resveratrol) 
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were given oral administration of 100 mg/kg of the compound daily throughout the 14-

day experiment. 

Histology analysis. Animals were euthanized 5 days after injection of TNBS 

using the drop jar method containing 5% isoflurane (260 mL in 1 L drop jar) for overdose 

inhalation, and the proximal portion of colons were excised and cleaned by saline 

flushing. The length of colon was measured before fixing the excised tissue with 4% 

paraformaldehyde. Colon pieces were embedded in paraffin, cut into 5µm sections, 

deparaffinized in xylene, serially diluted in decreasing concentrations of ethanol, and 

stained with hematoxylin-eosin (H&E) for histopathological examination and Periodic 

Acid Schiff (PAS) staining to assess mucosal mucin production and presence of goblet 

cells. Histological scoring of colon sections was determined using previously published 

criteria (Akgun et al., 2005). 

Serum evaluation by enzyme-linked immunoabsorbant assay (ELISA). Acute 

phase serum amyloid A (SAA), Lipocalin-2 (Lcn2), myeloid peroxidase (MPO), and 

interleukin-10 (IL-10) levels in the serum were measured by using enzyme-linked 

immunosorbent assay (ELISA) kits. SAA ELISA kit was purchased from Abcam 

(Cambridge, United Kingdom), Lcn-2 ELISA kit was purchased from Thermo-Scientific 

(Waltham, Massachusetts, USA), MPO ELISA kit was acquired from LifeSpan 

BioSciences (Seattle, WA) and the IL-10 Luminex ELISA kit was purchased from 

Biolegend (San Diego, CA). All kits were used in accordance with the respective 

manufacturer’s protocol. 

 Flow cytometry staining and analysis. Cells from mesenteric lymph nodes were 

isolated and the red blood cells were lysed using lysis buffer (Sigma, St Louis, MO). Cell 
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suspensions were filtered using sterile 70 micron filters (Sigma, St Louis, MO). Four-

color flow cytometric analysis was performed following blocking with Fc receptor. All 

cells were washed with FACS staining buffer (PBS with 1% fetal bovine serum), then 

stained with FITC-labeled anti-CD3, PE-labeled anti-CD8 and PE-CY7-labeled anti-CD4 

at manufacturer suggested concentrations (Biolegend, San Diego, CA). For intracellular 

staining, cells previously stained for membrane proteins were fixed and permeabilized 

using a Fix/Perm kit (Biolegend, San Diego, CA). Cells were stained with PE-Cy7-

labeled CD4, PE-labeled Foxp3, FITC-labeled IL10, PE-labeled IFN-γ, and FITC-labeled 

IL-17 (Biolegend, San Diego, CA). Flow cytometry data was analyzed using a CXP 

FC500 flow cytometer (Beckman Coulter, Brea, CA) and the gating strategy for shown 

represented plots is shown in Figure 2.1. 

Genomic DNA extraction and 16S rRNA gene sequencing. Colonic flushes 

were used for pyrosequencing analysis to characterize the gut microbiome composition. 

The extraction of genomic DNA from colonic flushes was carried out using the QIAamp 

DNA Stool Mini Kit (Qiagen, Hilden, Germany) according to the manufacture's 

instruction. The DNA concentration were determined using a NanoDrop ND-1000 

spectrophotometer and stored at −20°C until further processing. Amplification of the 16S 

rRNA V3-V4 hypervariable gene region was carried out using the 16S V3 314F forward 

(5′TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG

3′) and V4 805R reverse primers 

(5′GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCT

AATCC3′) with added Illumina adapter overhang nucleotide sequences. The PCR 

conditions used  were as follows: 3 minutes (min) at 95°C, follow by 25 cycles of 30 
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seconds (s) at 95°C, 30 s at 55°C and 30 s at 72°C, and a final extension at 72°C for 5 

min. Each reaction mixture (25 μl) contained 50 ng of genomic DNA, 0.5 μl of amplicon 

PCR forward primer (0.2 μM), 0.5 μl of amplicon PCR reverse primer (0.2 μM) and 12.5 

μl of 2× KAPA Hifi Hot Start Ready Mix. Each reaction was cleaned up with Agencourt 

AMPure XP beads (Beckman Coulter, Indianapolis, IN). Attachment of dual indices and 

Illumina sequencing adapters was performed using 5 μl of amplicon PCR DNA product, 

5 μl of Illumina Nextera XT Index Primer 1 (N7xx), 5 μl of Nextera XT Index Primer 2 

(S5xx), 25 μl of 2× KAPA HiFi Hot Start Ready Mix, and 10 μl of PCR-grade water in 

this case. Amplification was carried out under the following conditions: 3 min at 95°C, 

followed by 8 cycles of 30 s at 95°C, 30 s at 55°C, and 30 s at 72°C, and a final extension 

at 75°C for 5 min. Constructed 16S rRNA gene libraries were purified with Agencourt 

AMPure XP beads and quantified with Quant-iT PicoGreen dsDNA Assay kit (Thermo 

Fisher Scientific, Waltham, MA). Library quality control and average size distribution 

were determined with the Agilent Technologies 2100 Bioanalyzer (Agilent, Santa Clara, 

CA). Libraries were normalized and pooled to 40 nM based on quantified values. Pooled 

samples were denatured and diluted to a final concentration of 6 pM with a 30% PhiX 

(Illumina, San Diego, CA) control. Amplicons were subject to pyrosequencing using the 

MiSeq Reagent Kit V3 in the Illumina MiSeq System. 

Microbial 16S rRNA gene analysis of sequencing data. The online 16S analysis 

software from National Institute of Health (NIH, Baltimore, MD), known as Nephele 

(https://nephele.niaid.nih.gov/), was used to analyze sequencing data collection from the 

Illumina MiSeq platform. FASTQ sequences were uploaded to Nephele and the 16S 

metagenomics application was performed. Groups of related DNA sequences were 
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assigned to operational taxonomic units (OTUs), and Nephele-generated output files were 

analyzed to determine gut microbial composition. Linear Discrimination Analysis Effect 

Size (LEfSe) was performed on Nephele-generated OTU output data in order to 

determine microbial biomarkers among experimental groups as previously described 

(Segata et al., 2011). 

Quantitative Real-Time PCR. For validation of bacteria identified by 16S rRNA 

gene analysis, qRT-PCR was used. DNA was extracted from cecal samples using the 

QIAamp DNA Stool Mini Kit (Qiagen, Hilden, Germany). Samples were analyzed by 

PCR using primers designed to amplify bacterial 16S rRNA genes. For quantification of 

Ruminococcus gnavus (5′AGAGGGATGTCAAGACCAGGTA, 

3′TACTAGGTGTCGGGTGGAAAAG), Akkermansia muciniphila 

(5′GTATCTAATCCCTTTCGCTCCC, 3′GACTAGAGTAATGGAGGGGGAA), and 

Bacteroides acidifaciens (5′GTATGGGATGGGGATGCGTT, 

3′CTGCCTCCCGTAGAGTTTGG) the StepOnePlus Real-Time PCR system was used. 

Fold changes from PCR analysis were obtained by using the delta-delta CT method with 

comparison to the control group (Vehicle). 

SCFAs identification and quantification. Colonic flushes were collected 

immediately after euthanasia by excising colon tissues and flushing them with PBS. 

Samples were collected into in 2 ml Eppendorf tubes under anaerobic conditions. 

Samples collected were immediately frozen at −80 °C for future analysis. Samples were 

analyzed for SCFA concentrations using 2-Ethylbutyric acid as internal standard as 

previously described (Chitrala et al., 2017). Briefly, the cecal samples (100 mg) were 

suspended and homogenized in water. After centrifugation for 10 min at 12,000 rpm, the 



www.manaraa.com

 

15 

supernatant was acidified by addition 25% metaphosphoric acid. The internal standard 

was added into the supernatant. SCFAs were identified and quantified using a HP 5890 

gas chromatograph configured with flame-ionization detectors (GC-FID) and SCFAs 

were identified using control standard compounds purchased from Sigma-Aldrich. 

Fecal transfer experiment. Fecal material  from TNBS+Vehicle or 

TNBS+Resveratrol mice was collected 48 hours after the last day of oral gavage 

treatment in the experimental model (day 5) from colonic flushes under anaerobic 

conditions (using anerobic glove box chamber) prior to inoculation into recipient mice in 

200 μl of PBS. Fecal material was collected 48 hours after the last treatment to ensure 

that resveratrol had been absorbed in the tissues and eliminated from the feces prior to 

collection, as studies have shown this natural compound is rapidly absorbed and 

eliminated after consumption (Busbee et al., 2013).  Before the fecal transfer, recipient 

mice (6 weeks old) were treated with streptomycin and penicillin to deplete endogenous 

gut microbiota. Penicillin (1g/L) and streptomycin (1g/L) were dissolved in sterile water 

and 100 µl were fed into mice by oral gavage once a day for four consecutive weeks, as 

previously described (Khosravi et al., 2014). Depletion of microbiota was validated by 

PCR analysis using 16S rRNA gene Eubacteria primer (5′ATTACCGCGGCTGCTGGC, 

3′ACTCCTACGGGAGGCAGCAGT). Colitis induction was performed as previously 

described. Briefly, on the last day of antibiotic treatment, prior to disease induction, 

recipient mice were given feces (5g/L stocks from disease and treated groups) by oral 

gavage (100 µl) for 5 days. Body weights were measured daily and colonoscopy was 

performed every other day. At the end of experiment, the mice were sacrificed and colon 

tissues were taken for histopathology analysis by staining with H&E and PAS as 
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described already. Mesenteric lymph nodes were taken and T cell phenotyping was 

performed using flow cytometry as described above. 

Statistical Analysis.  GraphPad Prism software (San Diego, CA) was used for all 

statistical analysis.  For the in vivo mouse experiments, groups of 5-10 mice were used 

per experimental group.  For in vitro assays, all experiments were performed in triplicate.  

For statistical differences, one-way ANOVA was used for each experiment, and Tukey’s 

post-hoc test was performed to analyze differences between groups, unless otherwise 

indicated.  A p value of at least ≤ 0.05 was used to determine statistical significance. 

2.4 RESULTS 

Resveratrol attenuates TNBS-induced colitis 

In the current study, we tested the ability of  resveratrol to attenuate a well-

characterized TNBS-mediated murine model of colitis (Kim and Berstad, 1992). We used 

4 groups of mice:  Vehicle alone, resveratrol alone, TNBS+Vehicle, and 

TNBS+Resveratrol.  TNBS administration caused colitis with significant decrease in 

body weight (~20%) when compared to Vehicle- or resveratrol-treated only groups, as 

depicted in Figure 2.2A. However, in the TNBS+Resveratrol group, the weight loss was 

significantly reversed (~8%).  Additionally, the TNBS+Vehicle group showed ~60% 

survival, while TNBS+Resveratrol group showed 100% survival (Figure 2.2B). Colitis-

induction caused an overall decrease in the colon length in TNBS+Vehicle groups 

compared to those treated with either Vehicle or Resveratrol alone, as shown in Figure 

2.2C-D. However, TNBS+Resveratrol groups showed a significant increase in colon 

length when compared with the disease group (TNBS+Vehicle). Colitis is also 

characterized by large productions of inflammatory biomarkers such as SAA, Lcn2, and 
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increased MPO activity, which are often used in the diagnosis of the severity of colitis 

(Martinez-Moya et al., 2012; Singh et al., 2012). The level of these biomarkers were 

significantly elevated in the TNBS+Vehicle group (Figure 2.2E-G), but 

TNBS+Resveratrol showed significant decreases in the levels of all those inflammatory 

biomarkers, collectively showing that resveratrol was able to ameliorate the colonic 

inflammatory response induced by TNBS. Similar results were obtained in DSS-induced 

colitis model with the current resveratrol treatment regimen. Oral administration of 

resveratrol prevented DSS colitis-induced weight loss (Figure 2.3A) and colon shortening 

(Figure 2.3B-C).    

Colonoscopic examination at 3 different time points (days 0, 3, and 5) during the 

experiment gave a clear picture of the development of colitis-associated lesions and tissue 

sloughing after TNBS injection (TNBS+Vehicle), but TNBS+Resveratrol mice showed 

marked decrease in tissue disruption (Figure 2.2H-I). Histological examination of 

formalin-fixed colon tissues stained with H&E was also performed (Figure 2.4A), which 

showed a significant amount of cellular infiltration and loss of mucosal architecture in the 

TNBS+Vehicle group compared to naive mice treated with either just Vehicle or 

resveratrol alone.  In contrast, TNBS+Resveratrol mice showed marked reduction in 

cellular infiltration, resembling the control groups. We also performed PAS staining on 

fixed colon tissue to determine normal arrangement and distribution of mucin and goblet 

cells within the colon mucosa. Mice challenged with TNBS showed high reduction in the 

number of goblet cells and mucin thickness, which was greatly returned to normal levels 

and size of mucin thickness in colons excised from TNBS+Resveratrol mice, similarly to 

naïve mice treated with Vehicle or resveratrol only (Figure 2.4B). Histological scores of 
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colons from TNBS mice treated with resveratrol (TNBS+Resveratrol) showed a 

significant decrease in disease parameters compared to TNBS+Vehicle mice, which had 

much higher scores than the controls groups (Figure 2.4C). These data suggested that 

resveratrol prevents the colonic tissue damage induced by TNBS, which includes loss of 

the naturally-occurring protective mucous layer.  

Resveratrol treatment reduces inflammatory T cell subsets and increases 

anti-inflammatory Tregs 

 In order to examine the T cell subsets during disease and treatment states, 

we isolated cells from the mesenteric lymph node of all groups and phenotyped these 

cells using flow cytometry. First, we looked at expression of the general T cell marker 

(CD3) which showed a significant increase in the percentage in TNBS+RES mice, while 

TNBS+Resveratrol treatment led to a marked decrease (Figure 2.5A). We next looked at 

both T helper (CD4+) and cytotoxic (CD8+) T cell subset populations and showed 

significant increases in both CD4+ and CD8+ T cells in TNBS+Vehicle mice compared 

with those that were treated with Vehicle or resveratrol alone (Figure 2.5B), but this was 

effectively reduced in TNBS+Resveratrol groups.  We then performed 

intracellular/intranuclear staining to identify the effect of resveratrol on specific CD4+ T 

cells subsets which include inflammatory IFNγ- and IL17-producing CD4+ T cells, in 

addition to anti-inflammatory CD4+FOXP3+ and CD4+IL10+ populations. The data 

showed a significant increase in percentages of both anti-inflammatory CD4+FOXP3+ 

and CD4+IL10+ cells population in the TNBS+Resveratrol group when compared 

TNBS+Vehicle, and this increase in CD4+FOXP3+ populations were also observed in 

naïve mice treated with resveratrol (Figure 2.5C-D). In contrast, intracellular staining for 
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CD4+IFNγ+ and CD4+IL17+ showed significant increases in both percentage and absolute 

cell number in TNBS+Vehicle mice, while those in the TNBS+Resveratrol had a reversal 

in this effect (Figure 2.5E-F). Absolute cell numbers of T cells and T cell subsets in the 

MLN confirmed these findings (Figure 2.5G).  Collectively, these data showed that 

resveratrol treatment reduces the inflammatory T cell response during TNBS-induced 

colitis, while promoting the production of anti-inflammatory T cell subsets, mainly Tregs 

and IL-10-producing CD4+ cells. This increase in Tregs was also observed in naïve mice 

that were treated only with resveratrol alone. 

Alterations in gut microbiota and SCFA composition in colitis-induced mice 

treated with resveratrol  

 Next, we analyzed the gut microbiota from the all experimental groups to 

determine whether or not resveratrol altered the gut microbial composition during colitis. 

From colonic flushes, we isolated genomic DNA and performed 16S rRNA gene 

sequencing, analyzing the sequenced reads with the NIH-based Nephele online analysis 

tool. Nephele analysis output showed that the alpha diversity, represented as chao1, in 

naïve mice treated with resveratrol had the most diverse gut microbial compositions when 

to the other groups (Figure 2.6A). In terms of beta diversity, depicted as a PCA plot, 

samples clustered within their respective groups, with TNBS+Vehicle samples showing 

more dissimilarity compared to Vehicle-treated, or those groups treated with resveratrol 

(Resveratrol or TNBS+Resveratrol) (Figure 2.6B). 16s rRNA gene sequencing analysis 

from Nephele allowed sample reads to be classified into OTUs from phylum to the 

species level, and output data up to the genus level is summarized in Figures 2.7-2.9. In 

order to determine the most divergent and potential microbial biomarkers within 
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experimental groups, LeFSe analysis was performed with comparisons of TNBS+Vehicle 

vs TNBS+Resveratrol (Figure 2.6C-D). The results showed that TNBS+Vehicle mice had 

increased abundance of Bacteroides acidifaciens compared to the other groups (Figure 

2.6E), while naïve or TNBS-induced colitis mice treated with resveratrol had enrichment 

of bacteria belonging to the genus Ruminococcus (Figure 2.6C).  At the species level, 

Ruminococcus gnavus and Akkermansia muciniphila showed a significant increase in 

TNBS+Resveratrol groups when compared to TNBS+Vehicle groups (Figure 2.6F-G). It 

is interesting to note that mice treated with resveratrol alone also showed increases in 

Ruminococcus gnavus (Figure 2.6F).  In order to validate our sequencing results at the 

species level, we performed PCR using bacterial species-specific primers. As shown in 

Figure 2.6H-J, Bacteroides acidifaciens was increased in the TNBS+Vehicle group 

compared to naïve mice treated with Vehicle or resveratrol only, but this species was 

reduced in the TNBS+Resveratrol group (Figure 2.6H). In addition, Ruminococcus 

gnavus and Akkermansia muciphila species showed significant increases in abundance in 

groups treated with resveratrol (Resveratrol or TNBS+Resveratrol) when compared to 

those treated with only vehicle (Vehicle or TNBS+Vehicle) (Figure 2.6I-J). 

 Lastly, we measured the SCFA production in response to these changes in 

the gut microbiome composition (Figure 2.10).  The data showed that acetic acid and i-

butyric acid concentrations were significantly reduced in the TNBS+Vehicle groups 

when compared to Vehicle, while naïve mice treated with resveratrol and TNBS+RES 

groups showed significant increases in these SCFAs (Figure 2.10A, 2.10C). However, 

propionic acid, n-butyric acid, i-valeric acid, n-valeric acid, and n-copric acid showed no 

significant changes among the various groups (Figure 2.10B, 2.10D-F). Together, these 
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data suggested that treatment with resveratrol, particularly in colitis induced conditions, 

significantly altered both the gut microbiome composition and SCFA production. 

Fecal transfer from resveratrol-treated groups attenuates TNBS-induced 

colitis and alters the immune response 

 In order to determine whether or not resveratrol-induced alterations in the 

gut microbiome contributes to the altered immune response in colitis, we performed fecal 

transfer experiments following treatment of mice with antibiotics to deplete the existing 

gut microbiota. While there were no significant differences observed in body weight of 

mice in the wild-type and antibiotic-treated mice (Figure 2.11A), PCR for the universal 

Eubacteria 16S rRNA gene confirmed that the microbiome was depleted in antibiotic-

treated mice prior to inoculation with fecal material (Figure 2.11B-C). TNBS-exposed 

mice were inoculated with either feces from TNBS-treated mice ((FT) TNBS+Vehicle), 

or inoculated with feces from TNBS+Resveratrol-treated mice ((FT) TNBS+Resveratrol). 

(FT) TNBS+Vehicle mice showed a gradual decrease in body weight until the 

termination of the experiment (Figure 2.11D). However, (FT) TNBS+Resveratrol mice 

showed resistance to loss of body weight.  TNBS-induced colitis mice transferred with 

feces from TNBS+Vehicle also had shorter colons when compared those receiving fecal 

transfers from TNBS+Resveratrol-treated mice (Figure 2.11E-F). Looking at colitis-

associated inflammatory biomarkers such as SAA, Lcn2, and MPO, we found that the 

(FT) TNBS+Resveratrol group had significantly lower levels of these inflammatory 

biomarkers compared to the (FT) TNBS+Vehicle group (Figure 2.11G-I). In addition, 

colonoscopy examination showed increased ulceration and sloughing in portions of the 

colon in (FT) TNBS+Vehicle mice, while (FT) TNBS+Resveratrol groups showed 
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reduced presence of colon tissue destruction (Figure 2.11J, top panel). Colonoscopy and 

histological examination of formalin-fixed colon tissues stained with H&E also showed 

that (FT) TNBS+Resveratrol mice showed no signs of cellular infiltration and tissue 

destruction, while (FT) TNBS+Vehicle mice had these colitis-associated observations 

(Figure 2.11J-K). 

 Lastly, we performed T cell CD4+ phenotyping of the mesenteric lymph 

nodes in these fecal transfer experiments.  The data showed that there was significant 

increases in CD4+FOXP3+ Tregs (Figure 2.11L), though not in CD4+IL10+ (Figure 

2.11M), populations in the (FT) TNBS+Resveratrol group compared to (FT) 

TNBS+Vehicle, and the inflammatory Th1 (CD4+IFNγ+) and Th17 (CD4+IL17+) 

numbers were significantly reduced in these mice as well (Figure 2.11N-O). In order to 

confirm that relevant species were in fact altered during the FT experiments, PCR 

validation was performed on colonic flushes from these experimental FT groups. PCR 

validation showed that mice (FT) TNBS+Resveratrol mice did have increased levels of 

Akkermansia muciniphila (Figure 2.11P) and Ruminococcus gnavus (Figure 2.11Q) when 

compared to (FT) TNBS+Vehicle mice. In addition, there was significantly lower levels 

of Bacteroides acidifaciens in (FT) TNBS+Resveratrol groups compared to (FT) 

TNBS+Vehicle (Figure 2.11R), confirming that prominent species from the sequencing 

data were transferred successfully. Together, the fecal transfer experiments demonstrated 

that microbiota from (FT) TNBS+Resveratrol groups provide significant protection from 

colitis through enhancement of Tregs and suppression of Th17 and Th1 cells. 

2.5 DISCUSSION 
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Resversatrol is a potent anti-inflammatory agent.  Studies from our lab and 

elsewhere have shown the ability resveratrol to reduce the symptoms associated with 

colitis, in different murine models (Martin et al., 2006; Singh et al., 2012; Wagnerova et 

al., 2017; Yao et al., 2015; Youn et al., 2009), as well as in human patient populations 

(Samsami-Kor et al., 2015). Resveratrol is known to act through multiple pathways.  In 

our previous reports, we were able to reveal some of the mechanisms that made this 

natural compound such a successful treatment. For example, in the genetic IL-10-/- 

model of colitis, we showed that resveratrol treatment was able to induce 

immunosuppressive MDSCs that led to a reduction in clinical parameters in addition to 

the reduction in CXCR3 expressing T cells (Singh et al., 2012). The ability of resveratrol 

to induce these anti-inflammatory MDSCs has been shown in our lab in other disease 

models (Altamemi et al., 2014; Guan et al., 2012; Rieder et al., 2012), and been 

confirmed by others as well (Chen et al., 2015a; Hong et al., 2017). Other studies have 

shown that the beneficial effects of resveratrol against colitis can be attributed to other 

mechanisms, such as targeting sphingosine kinase 1 (SphK1) and apoptosis, restoring 

nitric oxide levels, reducing neutrophil infiltration, inhibiting nuclear factor-kappaB 

activation, acting as an anti-oxidant, as well as inhibiting adhesion molecules (Abdallah 

and Ismael, 2011; Abdin, 2013; Yao et al., 2011). Resveratrol is also well-known to be a 

ligand for the aryl hydrocarbon receptor (AhR), and our lab and others have shown this 

natural compound’s ability to shift T cell differentiation from Th17 to Tregs, which is 

dependent on this receptor-ligand interaction (Singh et al., 2007; Wang et al., 2013). 

Classically, Th1 and Th2 cells were thought to characterize Crohn’s disease and 

ulcerative colitis respectively, however, Th17 cells are now known to play an important 
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role in gut immunity and inflammation, particularly in regards to IBDs such as colitis 

(Ueno et al., 2018). Genome-wide association (GWAS) studies in IBD patients found that 

IL-17 regulating genes are greatly altered in the disease state, thus suggesting the 

importance of this factor in IBD such as colitis (Ueno et al., 2018). In fact, both animal 

models of colitis and human IBD patients are characterized by increased presence and 

development of Th17 cells at sites of inflammation (Galvez, 2014; Jiang et al., 2014; Lee 

et al., 2012). Th17 plasticity towards inflammatory (IFN-γ-producing Th1) or anti-

inflammatory (Treg) phenotypes make it a very unique cell population involved in 

intestinal homeostasis (Galvez, 2014). Interestingly, recent research has shown that Th17 

cells are greatly influenced by the microenvironment such as the microbiome and 

microbial-derived byproducts (Ueno et al., 2018). 

More recent studies have shown that resveratrol may protect against many clinical 

disorders by modulating the gut microbiota (Bird et al., 2017; Chen et al., 2016; Sung et 

al., 2017).  However, such studies did not perform fecal transfer experiments to 

demonstrate that the microbiota altered by resveratrol treatment could lead to suppression 

of colitis-associated inflammation.  In the present report, we therefore performed fecal 

transfer experiments, which conclusively demonstrated that resveratrol-mediated 

modulations in the gut microbiota is indeed responsible for attenuating colonic 

inflammation.  It is becoming apparent that the gut microbiome contributes significantly 

to the development and progression of various diseases, particularly in the case of colitis 

(Autenrieth and Baumgart, 2017; Conte et al., 2006; Kanauchi et al., 2003; Nishikawa et 

al., 2009; Rapozo et al., 2017). With the gut microbiome playing such an important role 

in this disease, recent research is even focused on fecal transfer experiments as a 
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therapeutic option (Meighani et al., 2017; Paramsothy et al., 2017). In addition, potential 

treatments against colitis are being examined more thoroughly to determine what, if any, 

effects these possible therapeutics have on the gut microbiome (Jang et al., 2017; Yang et 

al., 2017).  

In the current study, we were able to show that bacteria, such as those belonging 

to the Genus Ruminococcus, are increased during resveratrol treatment, which is 

consistent with animal studies and human fecal transplant experiments in which bacteria 

such as Ruminococcus and others were found to be anti-inflammatory, restoring and 

maintaining normal gastrointestinal tract function and integrity (Satokari et al., 2014). In 

fact, Ruminococcus gnavus and Akkermansia muciniphilia are mucolytic bacteria that are 

found to be reduced in both ulcerative colitis and Crohn’s Disease patients when 

compared to normal patient controls (Png et al., 2010). Therefore, restoration of these 

bacteria, which we noted in our data after naïve mice or TNBS-induced colitis mice were 

treated with resveratrol, could help in restoring or maintaining gut homeostasis, 

particularly after the microbiome is altered during colitis due to microbial dysbiosis. On 

the other hand, the current study shows that resveratrol can effectively reduce 

Bacteroides acidifaciens, which was found to be significantly increased in TNBS-

induced colitis, a finding also seen in a murine DSS model (Kang et al., 2013). B. 

acidifaciens have several features which could lead to the progression and development 

of colitis. This species is known to degrade mucin (Miyamoto and Itoh, 2000), the 

protective layer in the colon producing the host epithelial surface from luminal-bound 

bacteria. B. acidifaciens is also known to increase SCFA production of acetic and 

succinic acids (Miyamoto and Itoh, 2000), both of which can contribute to colitis-
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associated inflammation. Acetic acid, given in high concentrations, can induce colitis in 

murine models (Karakoyun et al., 2017). Succinic acid, which is produced by members of 

Bacteroidaceae, like B. acidifaciens, was found to be increased in the colons of colitis-

induced mice and when administered by enemas can produce ulcers in the colon (Ariake 

et al., 2000). B. acidifaciens resembles closely another member of the same genus B. 

fragilis, and these bacteria have been shown in the literature to trigger a strong 

inflammatory cascade response, including activation of IL-17-dependent pathways 

(Chung et al., 2018). By decreasing the presence of these bacteria during colitis-

induction, resveratrol might be able to suppress the Th17 response which would normally 

lead to resident tissue destruction and microbial dysbiosis. 

From our present study, we were also able to show that not only does resveratrol 

alter gut microbial composition during colitis disease induction, but these changes in the 

gut microbiome lead to alterations in the production of SCFAs. In particular, we found 

that i-butyric acid was significantly upregulated in resveratrol-treated mice during colitis 

induction and slightly in naïve mice treated with resveratrol compared to those treated 

only with Vehicle. From the literature, we know that butyrate/butyric acid has potent 

anti-inflammatory properties (Dai et al., 2017; van der Beek et al., 2017; Wang et al., 

2017). There are studies that also show that butyrate plays an important role in regulating 

the development of colitis, or acting as an agent to mitigate its deleterious effects (Cobo 

et al., 2017; Zhang et al., 2016c). For example, oral administration of sodium butyrate 

into DSS-induced colitis mice led to reduction of inflammation (Simeoli et al., 2017). 

Butyrate deficiency was shown to increase susceptibility to the development of colitis 

(Meisel et al., 2017). Therefore, the fact that resveratrol was able to increase production 
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of this SCFA, particularly during colitis-induced conditions, provides a better 

understanding of the mechanisms that promote its efficiency against colitis, as well as 

other inflammatory disorders. Interestingly, we saw an increase in acetic acid in 

resveratrol treatment only after colitis induction, and this SCFA is often used to induce 

colitis (Sadraei et al., 2017). It is possible that the increase in butyric acid was able to 

either negate the effects of increased acetic acid in our model. The uniqueness of our 

findings lie in the fact that we were able to show through 16S rRNA gene sequencing and 

fecal transfer experiments that the effectiveness of resveratrol against colitis could be 

explained by the ability of this natural product to alter and reverse microbial dysbiosis 

and SCFA production to promote an anti-inflammatory effect (induction of Treg/IL-10) 

and suppress the inflammatory (Th1/Th17) T cell response, something that has not been 

reported in the literature thus far. It is particularly interesting to note that the poor 

bioavailability of resveratrol during oral consumption, which is attributed to the weak 

aqueous solubility of the compound, has always been an issue in terms to suggesting this 

natural product as a treatment of various disease (Peng et al., 2018). In fact, this 

observation has led to a wealth of research focusing on how to increase the bioavailability 

of this potent anti-inflammatory natural product so that it can be absorbed and circulated 

to various affected organs, such as by way of encapsulation in nanoparticles or some 

other vehicle (Borges et al., 2018; Zu et al., 2018). However, our findings suggest that 

resveratrol alters the microbiome directly and this leads to the anti-inflammatory effects 

during colitis, even before it becomes bioavailable to various organs after oral 

consumption. 
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 In summary, the current study demonstrates the efficacy of resveratrol to 

attenuate colitis may result from its ability to alter gut microbiota that promotes anti-

inflammatory T cell induction while suppressing pro-inflammatory T cells as summarized 

in Figure 2.12.
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Figure 2.1 Gating strategy for flow cytometry.  MLN lymph nodes from control 

(Vehicle) mice were stained and examined by flow cytometry using the following gating 

strategy:  (A) Unstained negative controls were used to eliminate any non-specific false 

positive signal. (B) Single color controls were stained with either CD3 (FITC), CD4 (PE), 

or CD8 (PE-Cy7) to determine appropriate gating for histogram (top) and color dot plots 

(bottom). (C) Intracellular staining of CD4+ cells was gated as shown and represented in 

Figure 2.5. 
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Figure 2.2 Treatment with resveratrol reduces clinical symptoms associated with 

TNBS-induced colitis murine model.  Balb/c mice were administered intrarectally with 

1mg of TNBS to induce colitis. Four groups of mice were used:  Vehicle, Resveratrol, 

TNBS+Vehicle and TNBS+Resveratrol. The percent weight loss (A) was determined 

over the course of the study. (B) Survival curve of mice up to day 6 with colitis and those 

treated with RES. Colon lengths (C-D) were measured upon sacrifice (Day 5). Serum 

levels of SAA (E), MPO (F) and Lcn2 (G) were evaluated by ELISA. Endoscopy (H) was 

performed on mice on days 0, 3, and 5. Colonoscopy scores are provided (I). Significance 

(p-value: *<0.05, **<0.01, ***<0.005, ****<0.001) was determined by using one-way 

ANOVA and post-hoc Tukey’s test. In all data presented in the figure, 5 mice were used 

in each group. Data presented is representative of at least 3 independent experiments. 
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Figure 2.3 Treatment with resveratrol reduces clinical symptoms associated with 

DSS-induced colitis murine model.  C57BL/6 mice were given 7 days of 3% DSS ad 

libitum followed by regular drinking water for 7 more days. Four groups of mice (n=5 per 

group) were used:  Vehicle, Resveratrol, DSS+Vehicle and DSS+Resveratrol. The 

percent weight loss (A) was determined over the course of the study. Colon lengths (B-C) 

were measured upon sacrifice (Day 10).  Significance of the bar graphs (p-value: *<0.05, 

**<0.01, ***<0.005, ****<0.001) were determined by using one-way ANOVA followed 

by Tukey’s post-hoc multiple comparisons test. 
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Figure 2.4 Treatment with resveratrol prevents cellular infiltration and mucin 

degradation and maintains colon gut structural architecture in TNBS model. The 

study was designed as described in Figure 2.2 legend. Colons (n=5) were excised from 

experimental mice at the endpoint of experiment, fixed in 10% formaldehyde, and 

embedded in paraffin blocks. Cross-section slides containing colons from experimental 

groups were stained using H&E (A) or PAS (B) for histological evaluation. Images of 

stained tissue were taken using both 4x and 20x objectives, and histological scores were 

provided (C). Scale bars (white) depicted are at 100 µM. Data is representative of at least 

3 independent experiments. 
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Figure 2.5 Resveratrol alters T cell subsets during TNBS colitis. The study was 

designed as described in Figure 2.2 legend.  Flow cytometry histograms/dot plots are 

shown for the following T cell subsets: CD3+ (A), CD4+ or CD8+ cells (B), 

CD4+FOXP3+ (C), CD4+IL10+ (D) and CD4+IFNγ+ (E), and CD4+IL-17+ (F) 

expressing cells. For Figures C-F, cells were gated on the CD4+ population. The gating 

strategy for the CD4+ populations is detailed in Figure 2.1.  Quantitative bar graphs 

depicting absolute cell numbers of the T cell subsets is provided (G) Each experimental 

group had at least 5 mice included, and significance (p-value: *<0.05, **<0.01, 

***<0.005, ****<0.001) was determined for absolute cell numbers by using one-way 

ANOVA followed by Tukey’s post-hoc multiple comparisons test. Data is representative 

of at least 3 independent experiments. 



www.manaraa.com

 

34 

 

Figure 2.6 16S rRNA gene sequencing analysis. The study was designed as described 

in Figure 2.2 legend.  Gut microbiome samples were collected from experimental groups 

by performing cecal flushes.  Genomic DNA was isolated and V3-V4 regions of 16S 

rRNA gene subunit were sequenced.  Three randomly selected mice from each group 

(n=3) were used for these experiments.  All sequencing samples were analyzed using 

Nephele software 16S metagenomics provided at Nephele website 

(nephele.niaid.nih.gov). Alpha diversity (A), and Beta diversity (B) are depicted. LeFSe 

analysis of the Nephele OTU output files generated the cladogram (C) and LDA score bar 

graph (D) depicting microbial biomarkers among TNBS+Vehicle vs. TNBS+RES groups. 

OTU percent abundances are shown for the species Bacteroides acidifaciens (E) 

Ruminococcus gnavus (F) and Akkermansia muciphila (G). Validation of these 

significantly-altered bacterial species were performed using PCR and the fold changes 

are calculated using the delta-delta CT method with comparison to Vehicle controls (H-

J). For 16S rRNA gene sequencing, 3 representative cecal flushes from each experimental 

group were processed and sequenced. For PCR validation, 10 mice were used in each 

group and fold changes were calculated using the delta-delta CT method compared to 

Vehicle control. Significance (p-value: *<0.05, **<0.01, ***<0.005, ****<0.001) was 

determined by using one-way ANOVA followed by Tukey’s post-hoc multiple 

comparisons test. Experiments are representative of 3 independent experiments. 
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Figure 2.7 16S rRNA sequencing analysis at the phylum to order level.  Gut 

microbiome samples (n=3 per group) were collected from experimental groups (Vehicle, 

Resveratrol, TNBS+Resveratrol, TNBS+Vehicle) by performing cecal flushes.  Genomic 

DNA was isolated and V3-V4 regions of 16S rRNA subunit were sequenced.  Three 

randomly selected mice from each group were used for these experiments.  All 

sequencing samples were analyzed using Nephele software 16S metagenomics provided 

at Nephele website (nephele.niaid.nih.gov). Stacked bar charts depicting OTU relative 

expression with corresponding color-coded legend for the following levels: phylum (A), 

class (B), and order (C).  
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Figure 2.8 16S rRNA sequencing analysis at the family level.  Gut microbiome 

samples were collected from experimental groups (Vehicle, Resveratrol, 

TNBS+Resveratrol, TNBS+Vehicle) by performing cecal flushes.  Genomic DNA was 

isolated and V3-V4 regions of 16S rRNA subunit were sequenced.  Three randomly 

selected mice from each group were used for these experiments.  All sequencing samples 

were analyzed using Nephele software 16S metagenomics provided at Nephele website 

(nephele.niaid.nih.gov). (A) Stacked bar charts depicting OTU relative expression with 

corresponding color-coded legend. (B) Bar graphs representing percent OTU abundance. 

Significance of the bar graphs (p-value: *<0.05, **<0.01, ***<0.005, ****<0.001) were 

determined by using one-way ANOVA followed by Tukey’s post-hoc multiple 

comparisons test. 
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Figure 2.9 16S rRNA sequencing analysis at the genus level.  Gut microbiome samples 

were collected from experimental groups (Vehicle, Resveratrol, TNBS+Resveratrol, 

TNBS+Vehicle) by performing cecal flushes.  Genomic DNA was isolated and V3-V4 

regions of 16S rRNA subunit were sequenced.  Three randomly selected mice from each 

group were used for these experiments.  All sequencing samples were analyzed using 

Nephele software 16S metagenomics provided at Nephele website 

(nephele.niaid.nih.gov). (A) Stacked bar charts depicting OTU relative expression with 

corresponding color-coded legend. (B) Bar graphs representing percent OTU abundance. 

Significance of the bar graphs (p-value: *<0.05, **<0.01, ***<0.005, ****<0.001) were 

determined by using one-way ANOVA followed by Tukey’s post-hoc multiple 

comparisons test. 
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Figure 2.10 Resveratrol treatment alters SCFA production in TNBS colitis.  The 

study was designed as described in Figure 2.2 legend.  SCFA were isolated from cecal 

contents of experimental groups through acidification using metaphosphoric acid. GC-

FID analysis was performed to determine the concentrations of acetic (A), propionic (B), 

i-butyric (C), n-buytric (D), i-valeric (E), and n-valeric (F) acids. SCFAs were identified 

using standard compounds purchased from Sigma-Aldrich. Representative data from two 

independent experiments with 5 mice in each group is depicted. Significance (p-value: 

*<0.05, **<0.01, ***<0.005, ****<0.001) was determined using one-way ANOVA 

followed by Tukey’s post-hoc multiple comparisons test. 
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Figure 2.11 Transfer of resveratrol-treated fecal contents leads to amelioration of 

colitis.  Female Balb/c mice were treated for 4 weeks with streptomycin and ampicillin 

(1g/L) prior to being injected intrarectally with 1mg of TNBS to induce colitis. 

Antibiotic-treated mice were weighed (A) and PCR performed on colonic flush samples 

to determine abundance of bacteria in the gut compared to naïve mice (B-C).  These mice 

received fecal transfer (FT) from either colitis disease groups, (FT) TNBS+Vehicle, or 

from TNBS+Resveratrol-treatment groups, (FT) TNBS+RES.  The percent weight loss 

(D) was determined over the course of the study. Colon lengths were measured upon 

sacrifice (E-F). Serum biomarkers for SAA (G), MPO (H), LCN2 (I) were detected using 

ELISA kits. Endoscopic images (J, top panel) and H&E stains of colons (J, bottom panel) 

are depicted (n=5 per group). Colonoscopy scores (K, top) and histological scores (K, 

bottom) are provided. Cells were isolated from mesenteric lymph nodes of experimental 

groups and absolute cell numbers from fecal transfer experiments were determined for 

CD4+FOXP3+ (L), CD4+IL10+ (M), CD4+IL17+ (N) and CD4+IFNγ+ (O). PCR 

validation from colonic flushes was performed after fecal transfer to confirm alterations 

in Akkermansia muciphila (P) Ruminococcus gnavus (Q) and Bacteroides acidifaciens 

(R), using delta-delta CT method with comparison to Vehicle controls. Each group had 

10 recipient mice in this experiment and significance (p-value: *<0.05, **<0.01, 

***<0.005, ****<0.001) was determined using one-way ANOVA followed by Tukey’s 

post-hoc multiple comparisons test. 
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Figure 2.12 Graphical Abstract. TNBS-induced colitis results in microbial dysbiosis, 

with increased abundance of Bacteroides acidifaciens. However, treatment with 

resveratrol prevents this colitis-associated gut microbial shift, leading to increased 

abundance of bacteria such as Akkermansia muciphila and Ruminococcus gnavus, and 

production of SCFA butyrate. Increased presence of Akkermansia muciphila, 

Ruminococcus gnavus, and butyrate shifts the CD4+ T helper response from Th17 to 

anti-inflammatory Tregs. Fecal transfer of resveratrol-treated mice confirms these 

alterations in the immune response were the result of changes in the gut microbial profile 

mediated by resveratrol.
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CHAPTER 3 

RESVERATROL ATTENUATES MURINE AOM-DSS INDUCED COLORECTAL 

CANCER BY PROMOTING BUTYRATE PRODUCTION AND INDUCING ANTI-

INFLAMMATORY T CELLS VIA ALTERATIONS IN THE GUT MICROBIOME AND 

SUPPRESSION OF HDACS

3.1 ABSTRACT 

Inflammatory bowel disease (IBD) is known to significantly increase the risk for 

development of colorectal cancer (CRC), thereby suggesting that inflammation and 

cancer development are closely intertwined.  Thus, it is likely that agents that suppress 

inflammation in the colon may prevent the onset of cancer.  In the current study, we 

investigated the effect of resveratrol, a stilbenoid, in inflammation-induced murine model 

of CRC using a combination of azoxymethane (AOM) and dextran sodium sulphate 

(DSS) and tested the role of microbiota in preventing inflammation-driven CRC.  

Resveratrol treatment caused an increase in the levels of anti-inflammatory 

CD4+FOXP3+ and CD4+IL10+ cells while decreasing proinflammatory such as Th1 and 

Th17 cells, as well as attenuated development of CRC in AOM/DSS mice.  Examination 

of colonic contents showed that resveratrol altered the gut microbiome and increased 

levels of the short chain fatty acid (SCFA), butryate.  Fecal transfer from resveratrol-

treated AOM/DSS mice resulted in attenuation of CRC and suppression of inflammation 

as evidenced by alterations in T cell subsets. Moreover, supplementation of butyrate in 

CRC resulted in similar alterations in microbial profile. In vivo and In vitro data also 

revealed both RES and BUT were capable of inhibiting histone deacetylases (HDACs), 
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which correlated with Treg induction.  Interestingly, analysis of TCGA datasets of CRC 

patients, also revealed that increased expression of Treg-specific transcription factor 

FoxP3 or anti-inflammatory IL-10 resulted in an increase in 5-year survival of patients 

with CRC. Together, these data suggest that resveratrol-mediated shift in T cells from 

pro-inflammatory to anti-inflammatory phenotype, in AOM/DSS model, may result from 

alterations in gut microbiome and increased butyrate production leading to attenuation of 

inflammation-driven CRC.  

3.2 INTRODUCTION 

 The current study was undertaken to investigate alterations in the gut microbiome 

by resveratrol during CRC. We show that in the AOM/DSS CRC murine model, 

resveratrol was able to alter the gut microbiome profile and increase microbial-

production of short-chain fatty acid (SCFA), butyrate, to promote an anti-inflammatory T 

cell response (Treg and CD4+IL-10) which decreased disease severity and tumor 

development in the colon. Additionally, fecal transfer of resveratrol-treated fecal material 

and butyrate supplementation experiments showed that modulation of gut microbiota and 

suppression of histone deacetylases (HDACs) were key mechanisms through which 

resveratrol, through butyrate-dependent mechanisms, was able to regulate the immune 

response and prevent CRC development. Lastly, we show that in the human CRC 

population, increased expression of Treg-associated genes (FoxP3 and IL-10) correlates 

with increased survival rates, thereby providing additional proof of the role of anti-

inflammatory environment in CRC suppression. 

 

3.3 MATERIALS AND METHODS 
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Animals. Female C57BL/6 mice (aged 6-8 weeks) were purchased from Jackson 

Laboratories (Bar Harbor, ME) and all mice were housed at the AAALAC-accredited 

animal facility at the University of South Carolina, School of Medicine (Columbia, SC). 

All procedures were performed according to NIH guidelines under protocols approved by 

the Institutional Animal Care and Use Committee (IACUC). 

Induction of AOM/DSS CRC in mice and treatment(s).  To test the efficacy of 

treatment in AOM/DSS-induced CRC model, AOM was purchased from Sigma-Aldrich 

(St. Louis, MO), and administered one time via intraperitoneal (i.p.) injection into 

C57BL/6 mice at a dose of 10 mg/kg at day zero, followed by three cycles of 2% DSS 

(Chem-Impex International, Wood Dale, IL) as previously described (Cui et al., 2010). 

For treatment groups, resveratrol (Sigma-Aldrich) was administered by oral gavage at 

100 mg/kg suspended in 100 µl of water, as previously reported by us (Singh et al., 

2010).  The regimen for resveratrol consisted of administering this compound 24 hours 

prior to the injection of AOM, followed by daily treatment throughout the duration of the 

experiment (10 weeks). Control groups consisted of naïve mice receiving either normal 

water or 100 mg/kg resveratrol. For butyrate supplementation experiments, sodium 

butyrate (BUT) from Sigma-Aldrich was given to mice at 200 mg/kg dissolved in water 

using the same regimen (days and controls) as resveratrol for 10 weeks. 

Procedures for evaluating CRC disease severity. During AOM/DSS induced 

CRC, mice were weighed daily after AOM injection. Animals were euthanized at the 

experimental endpoint (10 weeks after AOM injection) for further evaluation of clinical 

signs to include counting the number and size of tumors in the colon highlighted by 1% 

Alcian blue dye and measured by a ruler or digital caliper. Colonoscopies were 
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performed weekly to experimental groups using a Karl Storz (Tuttlingen, Germany) Tele 

Pack Vet X LED endoscope and scored the following way: 0 = normal colon, 1 = 

presence of blood and tissue sloughing, 2 = presence of 1-2 colonic polyps, 3 = 3-5 

colonic polyps present, 4 = 5-10 colonic polyps present, 5 = <10 polyps present in the 

colon. Colon, mesenteric lymph node (MLN), spleen, and blood were collected from 

euthanized mice for further evaluation. Colons were cleaned by saline wash and 

sectioned for histological analysis. Colon sections (tumor and normal adjacent tissue) 

were fixed with 4% paraformaldehyde and embedded in paraffin, cut into 5µm sections, 

deparaffinized in xylene, serially diluted in decreasing concentrations of ethanol, and 

stained with hematoxylin-eosin (H&E) and Periodic Acid Schiff (PAS) staining kits 

(Sigma-Aldrich). Images of stained sections were taken using a Biotek (Winooski, VT) 

Cytation 5 with digital wide field microscopy capabilities. 

Cellular phenotyping by flow cytometry. Cells from MLN, spleen, and blood 

were isolated from experimental groups and lysed with RBC lysis buffer (Sigma-Aldrich) 

before being filtered and stained with appropriate antibodies for cellular phenotyping 

using flow cytometry. All cells were pre-blocked with Fc receptor, washed with FACS 

staining buffer (PBS with 2% fetal bovine serum), and stained with commercially-

available antibodies (Biolegend, San Diego, CA) as follows: FITC- anti-CD3, PE-anti-

CD8, and PE-CY7-anti-CD4 to identify T cells; FITC-anti-Gr1 and PE-anti-CD11b to 

identify myeloid-derived suppressor cells (MDSCs). For phenotyping of T cell subsets, 

intracellular (Intracellular Staining Permeabilization Wash Buffer) and intranuclear 

(True-Nuclear Transcription Factor Buffer Set) staining kits (Biolegend) were used by 

way of manufactures instructions. Permeabilized cells were stained with PE-Cy7-anti-
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CD4, PE-anti-Foxp3, FITC-anti-IL10, PE-anti-IFNγ, and/or FITC-anti-IL17 (Biolegend). 

Flow cytometry data were analyzed using a CXP FC500 flow cytometry (Beckman 

Coulter, Brea, CA). 

 In vitro treatment of activated splenocytes with resveratrol or BUT. For in 

vitro experiments treated with resveratrol or BUT, whole splenocytes were excised from 

8-10 week old C57BL/6 mice and single cell suspensions were cultured in anti-CD3-

coated (.5µg/ml) 96-well plates at 1 x106 cells/mL density in complete RPMI media for 

24 hours at 37°C, 5% CO2. Cultured cells were then activated with soluble anti-CD28 

(2µg/ml) in the presence or absence of resveratrol (5, 10, or 25 µM) or BUT (1mM, 

5mM, or 10mM) for 24 hours (37°C, 5% CO2). In vitro doses of resveratrol were based 

on previous reports from our lab (Singh et al., 2007). The range of doses for BUT was 

determined using information gathered from other publications (Kespohl et al., 2017; 

Salimi et al., 2017).  

16S rRNA gut microbiota profiling, Phylogenetic Investigation of 

Communities by Reconstruction of Unobserved States (PiCRUSt), and SCFA 

analysis. 16S rRNA gut microbial profiling and SCFA quantification were done as 

previously described in our lab (Chitrala et al., 2017). Briefly, colonic contents were 

collected immediately after euthanasia and gathered in 2 ml eppendorf tubes while under 

anaerobic conditions and stored at −80 °C for downstream analysis purposes. For 16S 

rRNA sequencing, genomic DNA was extracted from 100 mg of colonic flush contents 

by using the QIAamp DNA Stool Mini Kit (Qiagen, Valencia, CA) according to 

instructions from the manufacturer. DNA libraries were prepped by amplification of the 

16S rRNA V3-V4 hypervariable region with added Illumina adapter overhang nucleotide 
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sequences and sequencing with Illumina (San Diego, CA) MiSeq platform. Sequenced 

reads were than analyzed using Nephele (https://nephele.niaid.nih.gov), an open-source 

analysis tool provided by the National Institute of Allergy and Infectious Diseases 

(NIAID) Office of Cyber Infrastructure and Computational Biology (OCICB) in 

Bethesda, MD (Weber et al., 2018). For microbial profiling, QIIME FASTQ paired end 

with chimera removal, open reference, and SILVA rRNA database project (Silva_99) 

options were used. For PiCRUSt data, a closed reference against the Greengenes database 

(Greengene_99) option was used. Operational taxonomic unit (OTU) tables generated 

from Nephele were further subjected to Linear Discrimination Analysis Effect Size 

(LEfSe) provided by the Huttenhower group 

(https://huttenhower.sph.harvard.edu/galaxy/) (Segata et al., 2011). For quantification of 

SCFAs present in colonic flushes, HP 5890 gas chromatograph configured with flame-

ionization detectors (GC-FID) was performed as previously described (Chitrala et al., 

2017; Zhao et al., 2006). SCFA detection by GC-FID was quantified using Varian MS 

Workstation (version 6.9.2.) software and concentrations were calculated by using 

standards for the detectable SCFAs.   

Fecal transfer (FT) experiments. For FT experiments, colonic contents were 

collected immediately after euthanasia, gathered in 2 ml eppendorf tubes while under 

anaerobic conditions, and placed in 30% glycerol solution prior to inoculation into 

recipient mice. Before FT inoculation, recipient mice were treated with 1g/L of 

streptomycin and penicillin dissolved in water and orally gavaged at 100 µl total volume 

daily for four weeks to deplete endogenous gut microbiota. Depletion of microbiota was 

validated by PCR analysis using the universal 16S rRNA Eubacteria primer. AOM/DSS 

https://nephele.niaid.nih.gov/
https://huttenhower.sph.harvard.edu/galaxy/
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CRC induction was performed as previously described in recipient mice. 48 hours after 

the last treatment with the antibiotic cocktail, recipient mice were given fecal material 

collected from the following groups: Naïve, Resveratrol-treated only, AOM, and 

AOM+Resveratrol. FT treatments were given via oral gavage every even days for a total 

of 35 days. Body weight and other clinical parameters described previously were also 

performed for the FT experiments to include weekly colonoscopies, 1% Alcian blue 

staining for quantification of colonic tumors, colon histology (H&E and PAS stains), and 

flow cytometry for analysis of T cell subsets.  

Quantitative Real-Time PCR (qRT-PCR) for bacterial species validation and 

HDAC expression. For validation of bacteria identified by 16S rRNA analysis, qRT-

PCR was used with primers designed to identify the 16s rRNA subunit of significantly 

altered bacterial species. DNA was extracted from colonic samples using the QIAamp 

DNA Stool Mini Kit (Qiagen) as previously described. For HDAC expression data, RNA 

was extracted from single cell suspensions of MLN (in vivo) or cultured splenocytes (in 

vitro) using RNeasy Mini kits (Qiagen) followed by conversion to cDNA using iScript 

synthesis kit (Bio-Rad). PCR amplification was performed using QuantiFast (bacteria) or 

QuantiTech (HDAC) SYBR Green PCR kits from Qiagen, and reactions were performed 

on a CFX96 qPCR system from Bio-Rad (Hercules, CA). Primers were designed by 

Intergrated DNA Technologies (Coralville, IA). Sequences for all primers are included in 

Table 3.1.  

Correlation of gene expression with survival in CRC patient data sets. The 

correlation of gene expression pattern with survival of human patients with CRC was 

performed using the TCGA datasets for colorectal cancer from The Cancer genome Atlas 
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maintained at TCGA (https://cancergenome.nih.gov/). TCGA examines the genome-wide 

expression, copy number variations, methylation status and mutations in an immense 

number of samples with a primary advantage such as i) each patient sample is 

accompanied with a comprehensive clinico-pathological data ii) a huge portion of the 

samples with integrated molecular profiles iii) number of matched normals for tumor 

samples iv) generation of data using latest and widely measured standard molecular 

profiling technologies (Bacolod et al., 2015). Survival analysis for the TCGA datasets 

were performed using the Kaplan-Meier survival curves which is defined as the 

probability of survival in a given length of time while considering time in many small 

intervals (Goel et al., 2010). It mainly involves the calculation of the probability of 

occurrence of an event at a certain point of time. 

Statistical analysis and data availability. GraphPad Prism software (San Diego, 

CA) was used for all statistical analysis unless otherwise stated. Experiments were 

repeated at least three times to confirm reproducibility.  For statistical differences, one-

way ANOVA and Tukey’s post-hoc comparison test was used unless otherwise noted in 

the text. Significance was determined to have a p value of ≤ 0.05 (*), 0.01 (**), 0.005 

(***), or 0.001 (****). Raw sequencing data (FASTq files) were uploaded to the NCBI 

Sequence Read Archive (SRA). 

3.4 RESULTS 

Resveratrol attenuates AOM-induced CRC by preventing early onset of 

inflammation and decreasing tumor burden 

To study the effects of resveratrol on CRC in the context of studying host immune 

response and microbiome, we used the well-characterized AOM/DSS CRC murine 
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model. For these studies, experimental groups consisted of naïve mice (Naïve), naïve 

mice treated with only resveratrol (Resveratrol), AOM/DSS disease mice with no 

treatment (AOM), and AOM/DSS disease mice treated with resveratrol 

(AOM+Reservatrol). Inducing CRC by AOM resulted in a significant decrease in body 

weight (~20%) compared to controls (naïve or resveratrol-treated only), but treatment of 

CRC mice with resveratrol reduced this disease-associated weight loss and resulted in 

~8% weight gain by the end of the study (Figure 3.1A). In addition, the administration of 

AOM resulted in decreased survival of mice (~75%) by the end of the study, whereas 

CRC mice treated with resveratrol resulted in 100% survival (Figure 3.1B). Resveratrol 

treatment also was able to reduce tumor burden in AOM-induced CRC mice as assessed 

during the experimental endpoint (10 weeks), as AOM-treated mice developed at least 10 

or more tumor polyps along the colon, whereas AOM+Reservatrol mice had little to no 

tumors polyps present (Figure 3.1C-D). In order to monitor the first signs of 

inflammation and tumor development during disease and treatment, colonoscopies were 

performed weekly among experimental groups. In AOM mice, inflammation 

development, which was characterized by the presence of bloody lesions and tissue 

sloughing along the colon, developed around week 3 of the disease model, but 

AOM+Resveratrol mice maintained more normal appearing colons (Figure 3.2). The 

presence of tumors was seen in AOM mice by week 5 and continued developing to week 

9, but CRC mice treated with resveratrol showed a marked decrease in colonic tumor 

development (Figure 3.1E-F; Figure 3.2).  Colon histology reinforced these observations 

as AOM colons showed loss of normal mucosal architecture and abnormal tissue growth 

with standard H&E staining which was not apparent in AOM+Resveratrol colon sections 
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which more closely resembled controls (Figure 3.1G). PAS staining on fixed colon 

sections was also performed as a way to access mucin production and goblet cell 

formation (Agawa et al., 1988). Mice challenged with AOM showed a high reduction in 

the number of goblet cells and presence of mucus compared to controls, but these 

observations were greatly reversed in colon sections excised from AOM+Resveratrol 

groups (Figure 3.1H). Collectively, these data demonstrated that resveratrol treatment 

attenuated tumor development in the AOM CRC model, perhaps by way of preventing 

early signs of inflammation caused by multiple cycles of DSS, as shown in week 3 of the 

colonoscopy images. 

Resveratrol treatment reduces inflammatory T cell subsets while increasing 

anti-inflammatory T cells in AOM-induced CRC 

In order to examine immune cell alterations during disease and treatment, cells 

were isolated from the MLN, spleen, and blood of all experimental groups and 

phenotyped using flow cytometry (Figures 3.3-3.6). In the MLN, expression of T cell 

marker (CD3+), along with T helper (CD3+CD4+) and cytotoxic T cell (CD3+CD8+), 

were significantly decreased in AOM mice compared to controls, and restoration of these 

T cell phenotypes occurred in the AOM+Resveratrol groups (Figure 3.1I). These data 

suggested that activated T cells in AOM group were leaving MLN and going to the colon 

while resveratrol reversed this.  Similar observations were seen in both the spleen (Figure 

3.4) and the blood (Figure 3.5).  Going further in phenotyping the CD4+ subsets, 

intracellular/intranuclear staining was performed to identify the effect of resveratrol 

inflammatory (IFNγ- and IL17-producing) cells) and to anti-inflammatory (FOXP3+ 

Tregs and IL10-producing) CD4+ T cell populations. The data collected from the MLN 
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showed that there was a significant increase in both anti-inflammatory CD4+FOXP3+ 

(Fig. 1J) and CD4+IL10+ (Figure 3.1K) cells population in AOM mice treated with 

resveratrol when compared with AOM disease mice. However, proinflammatory T cell 

subsets, such as Th17 (Figure 3.1L) and Th1 (CD4+IFNγ+) (Figure 3.1M) were 

significantly higher in AOM mice compared to the controls, but treatment with 

resveratrol was able to effectively reduce these inflammatory T cell phenotypes. This 

shift in the proinflammatory to anti-inflammatory T cell subsets after resveratrol 

treatment was also observed in the spleen (Figure 3.5). Lastly, as MDSCs are known to 

increase in the CRC human population and are thought to be a potential immunotherapy 

target (Sun et al., 2012), data collected from the spleen and blood revealed that MDSCs 

were significantly increased in the AOM disease state, but were effectively reduced by 

treatment with resveratrol (Figure 3.6). Together, these data suggested that resveratrol 

promoted an anti-inflammatory T cell response in the AOM CRC model.   

Alterations in gut microbiota and SCFA composition in AOM-DSS colorectal 

induced mice treated with resveratrol  

In order to determine if resveratrol-mediated alterations in inflammation is 

associated with changes in gut microbiome, we first analyzed the gut microbiota from all 

experimental groups by using 16S rRNA V3-V4 sequencing technique for microbial 

profiling. From colonic fecal matter, we isolated genomic DNA and performed 

pyrosequencing with Illumina MiSeq platform. Nephele analysis output showed that the 

alpha diversity, represented as chao1, was slightly enriched in the AOM and 

AOM+Resveratrol groups compared to controls (Figure 3.7A). In terms of beta diversity, 

depicted as a principle component analysis (PCA) plot, samples clustered within their 
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own respective groups, with resveratrol-treated groups showing more similar diversity 

compared to naïve controls, and the AOM disease group clustering further away from all 

other experimental groups (Figure 3.7B). 16s rRNA sequencing analysis from Nephele 

allowed sample reads to be classified into OTUs from the phylum to the species level 

(Figures. 3.8-3.12), and divergent microbial composition among the experimental groups 

was apparent starting even at the phylum level. At this taxa level, Verrucomicrobia, 

Tenericutes, and TM7 were found to be significantly reduced in abundance within AOM 

groups compared to the controls, whereas levels of these phyla were restored or increased 

in AOM+Resveratrol mice (Figure 3.8). AOM mice also had a slight increase in 

Firmicutes compared to the other groups, and an even more significant increase in 

Proteobacteria, which were reduced to normal levels in the AOM+Resveratrol the 

treatment group (Figure 3.8). At class level, Verrumcomicrobiae, Mollicutes, TM7-3, and 

Alphaproteobacteria were decreased in AOM mice, but found to be restored in most 

cases after treating mice with resveratrol (Figure 3.9). Deltaproteobacteria and Bacilli 

were increased in AOM, and while Deltaproteobacteria levels were reduced to control 

levels the in AOM+Resveratrol groups; in Bacilli, AOM+Resveratrol had the most of this 

class (Figure 3.9). Within the order level, Verrucomicrobiales, Anaeroplasmales, and 

CW040 showed significant reduction in abundance in the disease state when compared to 

the treatment group, while Clostridiales, Turicibacterales, and Desulfovibrionales 

showed significant increases in abundance in AOM mice compared to controls, and in 

AOM+Resveratrol group, these were reduced except for Turicibaterales (Figure 3.10).  

In a continuing trend, some bacteria at the family level, including Verrucomicrobiaceae, 

Dehalobacteriaceae, Anaeroplasmataceae, F16, Lachnospiraceae, Mogibacteriaceae 



www.manaraa.com

 

53 

and Closteridiaceae showed a decrease in AOM groups but an increase in the 

AOM+Resveratrol group, whereas Desulfovibrionaceae increased during the untreated 

disease state, but reduced to control levels in AOM+resveratrol group (Figure 3.11). 

Lastly, at genus level Ruminococcus, Akkermansia, Dehalobacterium, Anerostipes, 

Anaeroplasma, Blautia, and Clostridium were reduced in AOM mice compared to 

controls but were restored or increased significantly after treatment with resveratrol 

(Figure 3.12), whereas, Oscillospira and Desulfovibrio increased in AOM, but were 

significantly reduced in AOM+Resveratrol groups (Figure 3.12). As several bacteria were 

altered in the disease and treated states, LEfSe analysis, which is a useful tool to 

determine potential bacterial biomarkers among experimental groups (Segata et al., 

2011), was used to highlight the more relevant significant differences in the microbial 

community. From this analysis, it was found that among the species detected by 16S 

rRNA sequencing, Ruminococcus gnavus, Akkermansia muciniphillia, and Mucispirillum 

schaedleri were among the potential biomarkers in the AOM+Resveratrol treatment 

group (Figure 3.7C-D). As shown in Figure 3.7E, all of these species were significantly 

reduced in AOM mice, but were increased after treatment with resveratrol, and we 

validated these finding using PCR (Figure 3.7F). 

In addition to microbial profiling, we investigated the resulting changes in the 

microbial community altered bacterial-related metabolism, as PiCRUSt allows evaluation 

of bacterial function to be performed with 16S rRNA data (Langille et al., 2013). Using 

combined PiCRUSt (via Nephele) and LEfSe analyses, it was shown that there were 

marked changes in microbial functions amongst the experimental groups particularly 

after treatment with resveratrol, which included those that were connected to CRC (e.g. 
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P53 signaling) (Slattery et al., 2018), and those involved in generation of Tregs (e.g. 

TGF-β signaling) (Becker et al., 2018) (Figure 3.13). Lastly, we determined if changes in 

SCFA production, metabolite produced by gut flora in the host organism (Marchix et al., 

2018), could be seen in response to these changes in the gut microbiome composition 

triggered by treatment of CRC with resveratrol. Examination of colonic contents showed 

that n-buytric and i-butyric acid concentrations were significantly reduced in the AOM 

groups compared to controls. However, AOM group treated with resveratrol restored or 

increased the levels of these SCFAs (Figure 3.7G). Among the other detectable SCFAs, 

propionic acid, i-valeric acid, and n-valeric acid showed no significant changes among 

the experimental groups (Figure 3.7G). Together, these studies demonstrated that 

treatment of CRC-induced mice with resveratrol leads to significant changes in both the 

gut microbial profile and function.  

Fecal transfer from resveratrol-treated groups attenuates AOM/DSS-

induced CRC and alters the T cell-specific immune response: 

In order to determine whether or not resveratrol-induced alterations in the gut 

microbiome were contributing to the altered immune response in CRC, we performed 

fecal transfer (FT) experiments. After receiving antibiotics to deplete the existing gut 

microbiome, AOM-induced CRC recipient mice were inoculated with feces from either 

Naïve, Resveratrol, AOM, or AOM+Resveratrol groups. Mice inoculated with fecal 

material from disease controls, referred to as AOM(FT), showed gradual decrease in 

body weight throughout the study compared to controls, whereas AOM+Resveratrol(FT) 

mice recovered  and gained weight by the end of 10 weeks (Figure 3.14A). 

AOM+Resveratrol(FT) mice also showed increased survival when compared to 
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AOM(FT) mice (Figure 3.14B), along with decreased incidence of tumor development in 

the colon (Figure 3.14C-D). In addition, weekly colonoscopy examination (Figure 3.15) 

showed increased ulceration and sloughing in portions of the colon in mice fed disease-

derived feces, however, mice that were given FT from resveratrol-treated groups showed 

a reduced presence of polyps and abnormal colonic tissue growths at the end of the study 

(Figure 3.14E-F). Histological examination by H&E stains revealed AOM(FT) colon 

tissues had abnormal growth and damage to the mucosal layer, whereas 

AOM+Resveratrol tissues resembled that of control colons (Figure 3.14G). PAS stains 

also showed that AOM(FT) recipients had decreased mucus production and goblet cells, 

and just as with treatment with resveratrol in the AOM disease state, 

AOM+Resveratrol(FT) colon tissues had restored intestinal architecture with normal 

mucus present and distribution of goblet cells (Figure 3.14H).  Together, these FT 

experiments demonstrated that the clinical benefits provided by resveratrol against AOM-

induced CRC can be attributed, at least in part, to changes in gut microbiota. Next, we 

tested if the changes in the gut microbiota induced by resveratrol also resulted in changes 

in inflammation.   

As in the previous experiment, flow cytometry analysis was performed in the FT 

experiments and collected data showed in the MLNs (Figure 3.16) of AOM(FT) mice, a 

marked decrease in both T helper (Figure 3.14I) and cytotoxic T cells (Figure 3.14J), 

whereas AOM+Resveratrol(FT) mice had increased numbers of these cells present in the 

tissue. Going further in phenotyping the CD4+ T helper phenotypes, AOM mice showed 

significant decreases in anti-inflammatory Tregs (Figure 3.14K) and CD4+IL10-

producing cells (Figure 3.14L), which were significantly increased in all resveratrol-
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treated groups. On the other hand, proinflammatory Th17 (Figure 3.14M) and IL17-

producing CD4+ T cells (Figure 3.14N) were found to be significantly higher in 

AOM(FT) recipients compared to the other FT groups, and while AOM+Resveratrol(FT) 

recipients had decreased Th17 phenotype, this group was not able to decrease Th1 

(CD4+IFNγ+) cells. In order to confirm the transfer of feces resembled our previous 

sequencing data, PCR validation was performed showing a similar microbial profile for 

significantly altered species Ruminococcus gnavus and Akkermansia muciniphilia, which 

were decreased in AOM(FT) and increased in the AOM+Resveratrol(FT) group (Figure 

3.14O). Collectively, these data demonstrated that the alterations of microbiome by 

resveratrol were directly modulating the T cell immune response in AOM-induced CRC, 

particularly in increasing anti-inflammatory subsets (Tregs and CD4+IL-10-producers), 

while decreasing proinflammatory types (Th17 and Th1). 

Butyrate supplementation attenuates AOM/DSS-induced CRC and promotes 

an anti-inflammatory T cell response similar to resveratrol: 

In the current study, one of the distinct outcomes gathered regarding resveratrol-

mediated alterations in the gut microbiome was the increase in SCFA butyrate, which is 

known to have anti-inflammatory properties (Sitkin and Pokrotnieks, 2018; van der Beek 

et al., 2017). To test its role further, supplementation with sodium butyrate (BUT) was 

given in lieu of resveratrol to determine the potential effects of increased levels of this 

SCFA produced in the AOM-induced CRC model. To address this, experimental groups 

were designed to mimic the previous experiments with the exception of substituting 

resveratrol with BUT, and these groups included: Naive alone, BUT alone, AOM, and 

AOM+BUT.  As expected, AOM mice had significant decrease in body weight (~20%) 
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compared to controls, but like AOM+Resveratrol groups from the previous experiments, 

AOM+BUT mice had significant reduction in weight loss over time (Figure 3.17A).  

Additionally, while the AOM group had a decrease in overall percent survival, 

AOM+BUT mice showed 100% survival after 10 weeks (Figure 3.17B). Similar to 

AOM+Resveratrol mice, AOM+BUT mice had decreased or nonexistent colonic tumors 

(Figure 3.17C-D). Colonoscopic examination at 5 different time points (weeks 0,3,5,7 

and 9) during the experiment gave a clear picture of the development of CRC-associated 

lesions and tissue sloughing after AOM injection, but AOM+BUT groups showed 

marked decrease in tissue disruption (Figure 3.17E-F, Figure 3.18). Histological 

examination of formalin-fixed colon tissues stained with H&E was also performed on 

experimental groups, which clearly showed in AOM colons there was a loss of mucosal, 

submucosal, and serosa architecture, which was not seen in AOM+BUT (Figure 3.17G). 

PAS staining showed that AOM+BUT colons were also able to maintain significant 

amount of mucus presence and number of goblet cells which were lost in AOM tissue 

sections (Figure 3.17H). Supplementation with butyrate was thus able to attenuate the 

clinical parameters of AOM-induced CRC much like resveratrol, so it was reasonable to 

examine whether or not increased butyrate was able to alter the T cell repertoire. 

Just as with resveratrol treatment, flow cytometric analysis of the MLN (Figure 

3.19) showed expression of T cells in general, CD4+ T helper, and CD8+ cytotoxic T 

cells increased in AOM+BUT groups after being depleted in number in AOM-induced 

CRC (Figure 3.17I). AOM+BUT groups also had increased numbers in anti-

inflammatory Tregs (Fig. 4K) and CD4+IL-10 cells (Figure 3.17L) when compared to 

AOM mice which had much lower number of these cells than the control groups. 
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Alternatively, inflammatory Th17 (Figure 3.17M) and Th1 cells (Figure 3.17N), were 

much lower in AOM+BUT mice when compared to the AOM disease controls, in 

addition to anti-inflammatory CD4+FOXP3+ and CD4+IL10+ populations in both 

mesenteric lymph node and blood. A similar shift from proinflammatory Th17/Th1 to 

anti-inflammatory Tregs/IL-10 was seen after treatment with BUT in the spleen (Figure 

3.20). Collectively, these data showed that butyrate supplementation reduces the 

inflammatory T cell response much in the same manner as resveratrol, suggesting that 

increased production of this SCFA by resveratrol is another mechanism through which 

this natural compound may be effective against AOM-induced CRC. 

Supplementation of butyrate alters the microbial profile in AOM-induced 

CRC with similarities to resveratrol treatment:  

As resveratrol-mediated increases in colonic butyrate could also lead to alterations 

in the microbiome in addition to promoting anti-inflammatory T cell phenotypes, 16S 

rRNA microbial sequencing was performed on experimental groups in the butyrate 

supplementation experiments. Alpha diversity indicated that compared to the naïve 

group, all other experimental groups (BUT, AOM, AOM+BUT) had lower overall 

diversity within the samples (Figure 3.21A). Beta diversity or PCA clustering in the 

butyrate supplementation experiments mimicked closely what was seen in the resveratrol 

treatment experiments, with all experimental samples clustering within their own groups 

tightly, but the AOM group being the most divergent (Figure 3.21B). OTU abundances 

were calculated from the phylum to the genus level (Figure 3.22-3.25) as previously 

done. Several significant differences were seen at taxa levels with butyrate 

supplementation, however, for the current report and in context in explaining resveratrol-
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mediated mechanisms, only those with changes similar to the resveratrol treatment 

experiments are highlighted. For example, BUT-treated groups were able to restore or 

increase bacteria at the phyla Verrucomicrobia and Tenericutes, which were significantly 

reduced in the AOM group, while butyrate supplementation decreased Proteobacteria 

which rose in AOM-induced CRC (Figure 3.22). At the class level, AOM+BUT mice had 

increased Verrucomicrobiae, Mollicutes, and TM7-3 which were significantly reduced in 

AOM disease mice, and the AOM-increased Deltaproteobacteria were reduced after 

butyrate supplementation (Figure 3.23). At the order level, butyrate supplementation 

increased Verrucomicrobiales, Anaeroplasmales, and CW040 much like resveratrol did 

after being decreased in AOM groups, whereas Desulfovibrionales increased during 

AOM disease, but was reduced in the AOM+BUT samples (Figure 3.24). At the family 

level, Verrucomicrobiaceae, Anaeroplasmataceae, Closteridiaceae, Mogibacteriaceae, 

and F16 were all reduced in AOM mice compared to controls as previously shown, 

however, AOM+BUT increased levels of these gut microbials, whereas the increase seen 

in families in AOM samples (Desulfovibrionaceae) were reduced after supplementation 

with butyrate (Figure 3.25). At the genus level and closely mimicking resveratrol 

treatment experiments, Ruminococcus, Akkermansia, Anerostipes, Anaeroplasma, and 

Clostridium were reduced in AOM mice compared to controls but were restored or 

increased significantly after butyrate supplementation, whereas Desulfovibrio increased 

in AOM, but was significantly reduced in AOM+BUT groups (Figure 3.26). LeFSe 

analysis was then performed to determine which bacterial species had the highest LDA 

score among the experimental groups (Figure 3.21C-D), and combined with OTU 

abundance data, Ruminicoccus gnavus and Akkermansia muciniphilia (Fig 3.21E) were 
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found to be restored by butyrate after depletion in AOM-induced CRC, which was 

validated with PCR (Figure 3.21F). Take altogether, these data suggested that resveratrol-

mediated alterations in the gut microbiome and shifting to anti-inflammatory T cell 

phenotype in AOM-induced CRC can be explained, at least in part, by the ability of 

resveratrol to increase levels of butyrate in the gut microenvironment. 

Resveratrol and BUT inhibit HDACs in vivo and in vitro 

The increase in colonic butyrate production in resveratrol-treated CRC mice was 

interesting given the fact that previous reports show butyrate not only increases Treg 

production (Arpaia et al., 2013; Vieira et al., 2019), but the HDAC inhibiting activities of 

this SCFA have been implicated as a key mechanism in which it exerts anti-inflammatory 

and anti-cancer properties (Martin-Gallausiaux et al., 2018; Sethi et al., 2018; Silva et al., 

2018), including in colorectal cancer models (Zhang et al., 2016b). With is in mind, 

studies were performed to examine the ability of resveratrol and BUT to suppress 

HDACs in vitro and in the CRC in vivo model and how this correlated with increased 

Treg production. For in vitro studies, resveratrol increased Tregs in activated splenocytes 

in a dose-dependent manner (Figure 3.27, Figure 3.28A). BUT significantly increased 

Tregs at the higher doses (5 and 10mM) when treating activated cells in the same manner 

(Figure 3.27, Figure 3.28B). Following these observations, the expression of class I 

(HDAC I; HDACs 1, 2, 3, and 8) and class II HDACs (HDAC II; HDACs 4, 5, 6, 7, 9, 

and 10) were examined in cultures with the most significantly increased Treg expression 

(25µM for resveratrol and 5mM for BUT). Resveratrol in the in vitro cultured system was 

able to significantly reduce expression of all HDAC I (Figure 3.28C), but interestingly 

decreased only selective HDAC II, specifically not being able to reduce HDAC 6, 9, and 



www.manaraa.com

 

61 

10  (Figure 3.28D). BUT, being a well-known HDAC inhibitor, was able to reduce 

expression of all HDACs, regardless of specific classes (Figure 3.28E-F). Lastly, the 

expression of HDAC I and II was evaluated in in vivo CRC experiments given treatment 

with either resveratrol or BUT. Interestingly, similar results were seen. For HDAC I, 

resveratrol treatment compared to either naïve controls or CRC disease mice resulted in 

decreased expression (Figure 3.28G). While HDAC II were all decreased upon treatment 

with resveratrol compared to naïve controls, once again, select HDACs (HDAC 6, 9, and 

10) were not inhibited by resveratrol compared to AOM disease controls (Figure 3.28H). 

However, supplementation experiments with BUT resulted in overall decreased HDAC 

expression for HDAC I and HDAC II (Figure 3.28I-J). Altogether, this data suggests that 

while increased butyrate can lead to inhibition of HDACs, which correlates to increased 

Treg expansion, resveratrol is able to at least in part reduce select HDAC expression 

itself, independent of butyrate.       

Increased expression of anti-inflammatory T cell markers results in increased 

survival in human CRC patients: 

Lastly, as the current study was able to show that resveratrol modulated the gut 

microbiome to increase anti-inflammatory T cell subsets (Treg and IL-10-producers) 

while decreasing proinflammatory Th17/Th1 types, we examined whether there was any 

correlation between gene expression of T cell-specific makers in CRC patients with 

survival. Looking at the TCGA datasets of CRC patients, it was shown that increased 

expression of Treg-specific transcription factor FoxP3 (Figure 3.29A) or anti-

inflammatory IL-10 (Figure 3.29B) resulted in an increase in CRC 5-year patient 

survival. High expression of TGF-β, known to influence the development of Tregs, also 
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correlated with increased overall survival in the patient population (Figure 3.29C). 

However, high expression of Th-17 associated IL-17 cytokine was just the opposite, as it 

resulted in decreased patient survival, while patients with lower expression of IL-17 had 

increased survival over time (Figure 3.29D). While expression of Th-17 transcription 

factor RORγt was shown to have no difference in CRC patient survival over a 5-year 

period (Figure 3.29E), expansion past 5 years showed that high expression of this 

transcription factor was capable of bringing down overall CRC patient survival (Figure 

3.29F). Just as in the AOM-induced mouse model in the current study, IFNγ expression, 

associated with Th1 cells, didn’t seem to have much effect on CRC patient survival 

(Figure 3.29G), but in the context of Th1-specific transcription factor (Tbx21), high 

expression of this gene did appear to decrease the expected overall CRC patient survival. 

The results in the current study are promising given that T cell differentiation altered by 

resveratrol towards anti-inflammatory phenotype, via modulation of the gut microbiome, 

appears to have significant impact in overall human CRC patient survival. 

3.5 DISCUSSION 

Published reports with resveratrol date back to the late 1970s, and since then 

research has shown that this natural plant polyphenol has therapeutic properties ranging 

from anti-inflammatory (Koushki et al., 2018), anti-oxidant (Samsamikor et al., 2016; 

Singh et al., 2011a), anti-depressant (de Oliveira et al., 2018; Finnell et al., 2017), anti-

atherogenic (Riccioni et al., 2015), anti-aging (Li et al., 2017), as well as anti-cancer 

(Guan et al., 2012; Ko et al., 2017; Singh et al., 2011b). Our lab has published 

extensively on the anti-inflammatory properties of resveratrol in various disease models, 

showing often how the effects of this compound are AhR-dependent (Alghetaa et al., 
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2018; Chen et al., 2015b; Rieder et al., 2012; Singh et al., 2007; Singh et al., 2010). 

Activation of AhR by known ligands, such as resveratrol, has been shown by us as well 

as others to have significant impact on T cell development and phenotype (Busbee et al., 

2013; Ehrlich et al., 2018). For example, we have shown that activation of AhR by 

dietary indoles in a delayed-type hypersensitivity (DTH) model is essential for shifting 

the T cell response from a proinflammatory Th17 to an anti-inflammatory Treg 

phenotype (Singh et al., 2016). This is important in regards to CRC as studies have 

shown that high expression of Tregs in CRC patients indicate a more favorable prognosis 

(Hu et al., 2017; Xu et al., 2017), whereas increased Th17 has been linked to CRC 

pathogenicity and tumor development (Bedoui et al., 2018; Lee et al., 2017; Yan et al., 

2018). The current report reinforces this notion, as gene expression data of CRC patients 

seemed to indicate that high expression of anti-inflammatory T cell factors (FoxP3, IL-

10) improved patient survival, whereas proinflammatory makers linked to Th17 and Th1 

phenotypes decreased overall survival in the patient population. It is important to note 

that in the context of cancer, the exact role of Tregs/Th17 is not so clear, as other reports 

indicate that Tregs promote cancer development, whereas inflammatory Th17 cells 

prevent tumor invasion and metastasis (Amicarella et al., 2017; Timperi et al., 2016; 

Zhuo et al., 2015). Reports seem to indicate that the role these T cell phenotypes in 

cancer largely depends on the type of cancer along with the stage of disease severity, as 

well as whether the cancer is driven by chronic inflammation, which could explain the 

conflicted reports. For CRC, which is linked to chronic inflammation in the colon, an 

anti-inflammatory response may be more favorable, at least in terms of the early stages of 

the disease. This could explain why our lab as well as others have shown resveratrol as an 
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effective preventative treatment in CRC animal models (Altamemi et al., 2014; Cui et al., 

2010; Huderson et al., 2018; Lee et al., 2018), which is in part due to the ability of this 

compound to shift from a proinflammatory T cell response to anti-inflammatory one. 

While the ability of resveratrol to illicit this type of immune response has been well-

characterized, the significance of this report is in the fact that resveratrol-mediated 

modulation of the gut microbiome seems to be an important mechanism in promoting this 

T cell shift. 

A recent report by Wong et al. showed that inoculation with feces from CRC 

patients in germ-free or conventional mice resulted in an increase in colonic tumor 

development, proinflammatory markers, and Th17 phenotype (Wong et al., 2017). These 

findings are interesting because in addition to promoting the idea of Th17 as CRC-

inducing in nature as discussed already, this report showed that microbiota plays an 

important role in CRC development and progression. Prior to and since this report, it has 

been well-established that the complex interaction between microbiota and the host 

immunity play major roles in CRC pathogenicity (Chen, 2018; Yang et al., 2018b). For 

example, several bacteria, such as Helicobacter pylori, Streptococcus bovis, Bacteroides 

fragilis, and Clostridium septicum have been known to be major contributors to CRC 

development (de Almeida et al., 2018). Even shifts in certain phylum, such as increases 

in Proteobacteria, have been associated with CRC malignancy (Mori et al., 2018). Thus, 

it would stand to reason that therapeutics directed at combating CRC disease would also 

be able to modulate the gut microbiome to promote more beneficial effects.  

Previous reports have shown that resveratrol was capable of altering the gut 

microbiome in other disease models (Etxeberria et al., 2015; Qiao et al., 2014). In line 
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with the current study, researchers found that resveratrol was able to increase bacteria 

such as Verrucomicrobia and Akkermansia muciniphila, while decreasing Bacteroides, 

Dysgonomonas, and Turicibacter in a hypertension model with high-fructose diet (Tain et 

al., 2018). Additionally, in an obesity model it was found that resveratrol treatment 

increased Akkermansia and Ruminococcaceae, which were shown to alleviate the clinical 

effects associated with a high-fat diet (Zhao et al., 2017). Interestingly enough, studies 

found that Ruminococcus gnavus was in fact reduced in CRC patients when compared to 

controls (Chen et al., 2012), and that Akkermansia muciniphilia was associated with 

increased response to chemotherapy in CRC patients (Cani, 2018). The current study 

showed that these species were decreased in AOM-induced CRC, which correlates well 

with human CRC patients, but more importantly, resveratrol was able to restore or 

increase these bacteria. This could further explain why resveratrol is such an effective 

therapeutic in CRC models, as it seems to increase the presence of bacteria lost or 

decreased during CRC development and progression. These particular bacteria appear to 

possess properties essential for controlling and preventing tumor development in the 

gastrointestinal system. 

Alterations in the microbial profile were not the only interesting aspect obtained 

from the current studies, but rather it was significant to find that resveratrol-mediated 

alterations in the gut microbiome promoted SCFA, butyrate, production as well. Butyrate 

has been shown to act in an anti-inflammatory manner in various disease models. For 

example, supplementation with sodium butyrate was capable of attenuating diabetes-

associated inflammation (Xu et al., 2018), as well as inflammation linked to high-fat-diet-

induced non-alcoholic fatty liver disease (Sun et al., 2018). Oral administration of 



www.manaraa.com

 

66 

butyrate was also shown to reduce microbial-associated gastrointestinal inflammation and 

liver disease in Gulf War illness by mechanisms such as decreasing inflammatory-

mediated toll-like receptor (TLR) activation (Seth et al., 2018). In the context of CRC 

specifically, decreases in butyrate production are linked to CRC development (Chen and 

Vitetta, 2018), and it was shown that butyrate inhibited aberrant epigenetic modifications 

in CRC cells by upregulating α-ketoglutarate, which is important in mediating DNA 

methylation (Sun and Zhu, 2018). A more recent report closely linked to the current one 

showed that a mix of SCFA (butyrate, acetate, and propionate) was protective against 

AOM-induced CRC and was able to suppress key inflammatory cytokines such as IL-6 

and inducing apoptosis in tumor-associated epithelial cells (Tian et al., 2018). However, 

in our studies, we focused solely on butyrate supplementation and showed that this SCFA 

could alter T cells in CRC specifically by shifting from inflammatory Th1/Th2 to anti-

inflammatory Treg/IL-10-producers. One of the key mechanisms butyrate has been 

shown to promote an anti-inflammatory response is through inhibition of HDACs(Patnala 

et al., 2017; Zhang et al., 2016a), even in the case of promoting Treg production 

specifically in CRC (Zhang et al., 2016b). Interestingly though, the results in the current 

report seemed to suggest that resveratrol alone was promoting HDAC inhibition, 

independent of butyrate, and this correlated with induction of Tregs. However, it is 

important to note that resveratrol treatment in CRC resulted in increased colonic butyrate 

levels, and the T cell subsets were examined in the gut-specific draining lymph node 

(MLN). Therefore, the relationship between resveratrol modulation of the gut 

microbiome, increased butyrate, HDAC expression, and Treg expansion needs to be 
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further analyzed at the local site, in this case the colon, to further understand the interplay 

related to these mechanisms.  

Combined with the findings discussed above, the current study is able to provide 

new and exciting insights into how resveratrol has the potential to be a strong preventive 

agent against CRC. As the gut microbiota is now known to be important in disease 

progression and development, the fact that resveratrol can modulate this 

microenvironment in such a way as to induce a beneficial T cell immune response proven 

to help CRC patients is important, and through FT experiments, this resveratrol-mediated 

mechanism linked to microbiome-modulation appears more conclusive now. In addition, 

to our knowledge, this is the first report to confirm this and also provide evidence that 

resveratrol modulates the microbiome to increase butyrate production.  Our studies also 

suggest that resveratrol and other dietary AhR ligands may constitute preventive 

modalities in the fight against CRC and potentially other types of inflammatory diseases 

linked to microbial dysbiosis.
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Table 3.1. Primer Sequences 

Primer Forward Reverse 

Ruminococcu

s gnavus 

AGAGGGATGTCAAGACCAGGT

A 

TACTAGGTGTCGGGTGGAAAAG 

Akkermansia 

muciniphila 

GTATCTAATCCCTTTCGCTCCC GACTAGAGTAATGGAGGGGGA

A 

Mucispirillum 

schaedleri 

CACATGCAAGTCAGGGAGAAA CAGGTCTCCCCAACTTTTCCTA 

HDAC 1 CCGCATGACTCACAATTTGCT TCTGGGCGAATAGAACGCAGG 

HDAC 2 TACAACAGATCGCGTGATGAC TCCCTTTCCAGCACCAATATC 

HDAC 3 GAAATGTTGCCCGGTGTTGGA TGAGTTCTGATTCTCGATGCG 

HDAC 4 AACTTCTTCCCAGGAAGTGGA TGCGATAGGCATAACCACCGT 

HDAC 5 TGGACTGGGATATTCACCATG AGAGCCTGGAAAGAAGTTCCC 

HDAC 6 ATTGCTGCTTTCCTGCACATC AATCAACTTGCCTCCTGCCAA 

HDAC 7 GCTGAAGAATGGCTTTGCTGT AATGAGGATCTTGCTGGCTTT 

HDAC 8 AGTGCCTGATTGACGGGAAGT CGGTCAAATTTCCGTCGCAAT 

HDAC 9 AGGATGATGATGCCTGTGGTG GCCTGGTCAAATTCTGGTGCT 

HDAC 10 AGCAGAAATATGGGCTGAAGA AGAAGCTTCCATGCTCATAGC 
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Figure 3.1 Treatment with resveratrol reduces clinical symptoms and alters T cell 

phenotype in AOM-induced CRC model.  C57BL/6 mice were injected intraperitoneal 

with 10 mg of AOM followed by 3 cycles of 2% DSS, to induce CRC. Experimental 

groups consisted of: Naïve (n=6), Resveratrol (n=6), AOM (n=6), and AOM+Resveratrol 

(n=6). Clinical parameters consisted of percent weight loss (A) and survival (B), (C) 

Representative colons stained with 1% Alcian blue, (D) Bar graph depicting number of 

tumors counted in each experimental group, (E) Representative colonoscopic images 

from experimental groups, (F) Bar graph depicting scores after examination of tumor 

polyps detected during colonoscopies, (G) Representative colon sections stained with 

H&E; scale bar = 100 µM at 40x objective, (H) Representative colon sections with PAS 

staining; scale bar = 100 µM at 40x objective, (I) Bar graphs depicting absolute cell 

numbers in MLN for all T cells (CD3+), T helper (CD3+CD4+), and cytotoxic 

(CD3+CD8+) T cells. (J-M) Bar graphs depicting absolute cell numbers in MLN for 

Tregs (J), Th cells producing IL-10 (K), Th17 (L), and Th1 (M) cells. Significance (p-

value: *<0.05, **<0.01, ***<0.005, ****<0.001) was determined by using one-way 

ANOVA and post-hoc Tukey’s test for bar/dot graphs, Mann-Whitney test for weight 

data, and log rank test for survival curve. Data are representative of at least 3 independent 

experiments. 
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Figure 3.2 Weekly colonoscopy images in AOM-induced CRC treated with 

resveratrol. Induction of AOM CRC and treatment with resveratrol were performed as 

described in Figure 3.1 legend.  (A) Representative colonoscopies are shown from 

experimental groups which included Naïve (n=6), Resveratrol (n=6), AOM (n=6), 

AOM+Resveratrol (n=6) at weeks 1, 3, 5, and 7. Bar graphs depict colonoscopy scores 

(described in Materials and Methods) for experimental groups at week 1(B), week 3 (C), 

week 5 (D), and week 7 (E). Significance (p-value: *<0.05, **<0.01, ***<0.005, 

****<0.001) was determined by using one-way ANOVA followed by Tukey’s post-hoc 

multiple comparisons test for depicted bar graphs. 
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Figure 3.3 T cell phenotyping in MLN of AOM-induced CRC mice treated with 

resveratrol. Induction of AOM CRC and treatment with resveratrol was performed as 

described in Figure 3.1 legend.  Representative flow cytometry histograms and dot plots 

are depicted for the following T cell subsets: CD3+ (A), CD3+CD4+CD8+ (B), 

CD4+FOXP3+ (C), CD4+IL10+ (D) and CD4+IFNγ+ (E), and CD4+IL-17+ (F). For 

Figures C-F, cells were gated on CD4+ population. Data are representative of at least 3 

independent experiments. 
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Figure 3.4 T cell phenotyping in spleen of AOM-induced CRC mice treated with 

resveratrol. Induction of AOM CRC and treatment with resveratrol was performed as 

described in Figure 3.1 legend.  Flow cytometry dot plots and quantitative bar graphs 

depicting absolute cell numbers are shown respectively for the following T cell subsets: 

CD3+ (A-B), CD4+ or CD8+ cells (C-E), CD4+FOXP3+ (F-G), CD4+IL10+ (H-I) and 

CD4+IFNγ+ (J-K), and CD4+IL-17+ (L-M) expressing cells. For Figures F-M, cells were 

gated on CD4+ population. Each experimental group had at least 5 mice included, and 

significance (p-value: *<0.05, **<0.01, ***<0.005, ****<0.001) was determined for 

absolute cell numbers by using one-way ANOVA followed by Tukey’s post-hoc multiple 

comparisons test. Data are representative of at least 3 independent experiments. 
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Figure 3.5 T cell phenotyping in blood of AOM-induced CRC mice treated with 

resveratrol. Induction of AOM CRC and treatment with resveratrol was performed as 

described in Figure 3.1 legend.  (A) Representative flow cytometry plots are depicted 

showing CD3+ histogram (top) and CD4+/CD8+ dot plots (bottom) from experimental 

groups. (B) Bar graphs showing absolute cell numbers for the following T cell subsets 

respectively: CD3+, CD3+CD4+ (T helper), and CD3+CD8+ (cytotoxic T cells). 

Significance (p-value: *<0.05, **<0.01, ***<0.005, ****<0.001) was determined by 

using one-way ANOVA followed by Tukey’s post-hoc multiple comparisons test in bar 

graphs. Experiments are representative of at least 3 independent experiments. 
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Figure 3.6 MDSCs in the spleen and blood of AOM-induced CRC mice treated with 

resveratrol. Induction of AOM CRC and treatment with resveratrol was performed as 

described in Figure 3.1 legend.  (A) Representative flow cytometry dot plots are depicted 

showing MDSCs (CD11b+GR1+) in the spleen (top) and blood (bottom) from 

experimental groups. (B) Bar graphs showing absolute cell numbers for MDSCs in the 

spleen. (C) Bar graphs showing absolute cell numbers for MDSCs in the blood. 

Significance (p-value: *<0.05, **<0.01, ***<0.005, ****<0.001) was determined by 

using one-way ANOVA followed by Tukey’s post-hoc multiple comparisons test in bar 

graphs. Experiments are representative of at least 3 independent experiments. 
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Figure 3.7 16S rRNA sequencing analysis during AOM-induced CRC treated with 

resveratrol. The study was designed as described in Figure 3.1 legend.  Gut microbiome 

samples were collected from experimental groups by performing colonic flushes in 

experimental groups, which were: Naïve (n=7), Resveratrol (n=9), AOM (n=10), and 

AOM+Resveratrol (n=9).  Nephele analysis (nephele.niaid.nih.gov) was used to generate 

charts for chao1 alpha diversity (A) and PCA beta diversity (B). LeFSe analysis of the 

Nephele OTU output files generated the cladogram (C) and LDA score bar graph (D). (E) 

OTU percent abundances are shown in bar graphs for the species Ruminococcus gnavus, 

Akkermansia muciniphila, and Mucispirillums schaedleri.  (F) PCR validation of 

Ruminococcus gnavus, Akkermansia muciniphila, and Mucispirillums schaedleri. (G) Bar 

graphs representing concentration of SCFAs acetic acid, propionic acid, i-butyric acid, n-

butyric acid, i-valeric acid, and n-valeric acid. Significance (p-value: *<0.05, **<0.01, 

***<0.005, ****<0.001) was determined by using one-way ANOVA followed by 

Tukey’s post-hoc multiple comparisons test for depicted bar graphs. Experiments are 

representative of 3 independent experiments. 
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Figure 3.8 Significantly altered bacteria in AOM-induced CRC sample treated with 

resveratrol at the phylum level. Induction of AOM CRC and treatment with resveratrol 

was performed as described in Figure 3.1 legend, and 16S rRNA sequencing was 

performed as described in Figure 3.7 legend. Significance (p-value: *<0.05, **<0.01, 

***<0.005, ****<0.001) was determined by using one-way ANOVA followed by 

Tukey’s post-hoc multiple comparisons test in bar graphs. Experiments are representative 

of at least 3 independent experiments. 
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Figure 3.9 Significantly altered bacteria in AOM-induced CRC sample treated with 

resveratrol at the class level. Induction of AOM CRC and treatment with resveratrol 

was performed as described in Figure 3.1 legend, and 16S rRNA sequencing was 

performed as described in Figure 3.7 legend. Significance (p-value: *<0.05, **<0.01, 

***<0.005, ****<0.001) was determined by using one-way ANOVA followed by 

Tukey’s post-hoc multiple comparisons test in bar graphs. Experiments are representative 

of at least 3 independent experiments. 
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Figure 3.10 Significantly altered bacteria in AOM-induced CRC sample treated 

with resveratrol at the order level. Induction of AOM CRC and treatment with 

resveratrol was performed as described in Figure 3.1 legend, and 16S rRNA sequencing 

was performed as described in Figure 3.7 legend. Significance (p-value: *<0.05, **<0.01, 

***<0.005, ****<0.001) was determined by using one-way ANOVA followed by 

Tukey’s post-hoc multiple comparisons test in bar graphs. Experiments are representative 

of at least 3 independent experiments. 
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Figure 3.11 Significantly altered bacteria in AOM-induced CRC sample treated 

with resveratrol at the family level. Induction of AOM CRC and treatment with 

resveratrol was performed as described in Figure 3.1 legend, and 16S rRNA sequencing 

was performed as described in Figure 3.7 legend. Significance (p-value: *<0.05, **<0.01, 

***<0.005, ****<0.001) was determined by using one-way ANOVA followed by 

Tukey’s post-hoc multiple comparisons test in bar graphs. Experiments are representative 

of at least 3 independent experiments. 
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Figure 3.12 Significantly altered bacteria in AOM-induced CRC sample treated 

with resveratrol at the genus level. Induction of AOM CRC and treatment with 

resveratrol was performed as described in Figure 3.1 legend, and 16S rRNA sequencing 

was performed as described in Figure 3.7 legend. Significance (p-value: *<0.05, **<0.01, 

***<0.005, ****<0.001) was determined by using one-way ANOVA followed by 

Tukey’s post-hoc multiple comparisons test in bar graphs. Experiments are representative 

of at least 3 independent experiments. 
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Figure 3.13 LefSe analysis of Nephele-generated PiCRUSt data investigating 

bacterial function based on 16S rRNA sequencing. To study functional changes within 

the microbial samples collected, Nephele-based was performed using the PiCRUSt 

option, which requires a closed reference against the Greengenes database 

(Greengene_99) at taxa levels 2 and 3 for KEGG annotations of the uploaded dataset. 

LefSe was performed using the OTU table generated from the Nephele output analysis 

software as described in Materials and Methods. 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 

82 

 

Figure 3.14 Results from FT experiments in AOM-induced CRC model.  Antibiotic-

treated C57BL/6 mice were injected i.p. with 10 mg of AOM to induce colorectal cancer 

followed by 3 cycles of 2% DSS. Fecal material was inoculated into recipient mice from 

the following donors: Naïve (n=4), Resveratrol (n=4), AOM (n=4), and 

AOM+Resveratrol (n=4). Clinical parameters consisted of percent weight loss (A) and 

survival (B), both which were found to have significant differences in AOM(FT) vs. 

AOM+Resveratrol(FT) groups. (C) Representative colons stained with 1% Alcian blue. 

(D) Bar graph depicting number of tumors counted in each experimental group. (E) 

Representative colonoscope images from experimental groups. (F) Bar graph depicting 

scores after examination of tumor polyps detected during colonoscopies. (G) 

Representative colon sections stained with H&E; scale bar = 100 µM at 40x objective. 

(H) Representative colon sections which underwent PAS staining; scale bar = 100 µM at 

40x objective. (I-J) Bar graphs depicting absolute cell numbers in MLN for general T 

cells T helper (I), and cytotoxic (J) T cells. (K-N) Bar graphs depicting absolute cell 

numbers in MLN for Tregs (K), Th cells producing IL-10 (L), Th17 (M), and Th1 (N) 

cells. (O) PCR validation for the bacterial species Ruminococcus gnavus and 

Akkermansia muciniphila. Significance (p-value: *<0.05, **<0.01, ***<0.005, 

****<0.001) was determined by using one-way ANOVA and post-hoc Tukey’s test for 

bar/dot graphs, Mann-Whitney test for weight data, and log rank test for survival curve. 

Data are representative of at least 3 independent experiments. 
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Figure 3.15 Weekly colonoscopy images in FT experiments. Induction of AOM CRC 

and FT were performed as described in Figure 3.14 legend.  (A) Representative 

colonoscopies  are shown from experimental groups which included Naïve(FT) (n=4), 

Resveratrol(FT) (n=4), AOM(FT) (n=4), AOM+Resveratrol(FT) (n=4) at weeks 1, 3, 5, 

and 7. Bar graphs depict colonoscopy scores (described in Materials and Methods) for 

experimental groups at week 1(B), week 3 (C), week 5 (D), and week 7 (E). Significance 

(p-value: *<0.05, **<0.01, ***<0.005, ****<0.001) was determined by using one-way 

ANOVA followed by Tukey’s post-hoc multiple comparisons test for depicted bar 

graphs. 
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Figure 3.16 T cell phenotyping in MLN of FT experiments. Induction of AOM CRC 

and FT were performed as described in Figure 3.14 legend.  Representative flow 

cytometry dot plots are depicted for the following T cell subsets: CD3+CD4+CD8+ (A), 

CD4+FOXP3+ (B), CD4+IL10+ (C) and CD4+IFNγ+ (D), and CD4+IL-17+ (E). For 

Figures B-E, cells were gated on CD4+ population. Data are representative of at least 3 

independent experiments. 
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Figure 3.17 Treatment with sodium butyrate (BUT) reduces clinical symptoms and 

alters T cell phenotype in AOM-induced CRC model.  Female C57BL/6 mice were 

injected intraperitoneal with 10 mg of AOM to induce colorectal cancer followed by 3 

cycles of 2% DSS. Experimental groups consisted of: Naïve (n=4), BUT (n=4), AOM 

(n=4), and AOM+BUT (n=4). Clinical parameters consisted of percent weight loss (A) 

and survival (B), both of which were found to have significant differences in AOM vs. 

AOM+Resveratrol groups. (C) Representative colons stained with 1% Alcian blue. (D) 

Bar graph depicting number of tumors counted in each experimental group. (E) 

Representative colonoscopic images from experimental groups. (F) Bar graph depicting 

scores after examination of tumor polyps detected during colonoscopies. (G) 

Representative colon sections stained with H&E; scale bar = 100 µM at 40x objective. 

(H) Representative colon sections which underwent PAS staining; scale bar = 100 µM at 

40x objective. (I) Bar graphs depicting absolute cell numbers in MLN for general T cells 

(CD3+), T helper (CD3+CD4+), and cytotoxic (CD3+CD8+) T cells. (J-M) Bar graphs 

depicting absolute cell numbers in MLN for Tregs (J), Th cells producing IL-10 (K), 

Th17 (L), and Th1 (M) cells. Significance (p-value: *<0.05, **<0.01, ***<0.005, 

****<0.001) was determined by using one-way ANOVA and post-hoc Tukey’s test for 

bar/dot graphs, Mann-Whitney test for weight data, and log rank test for survival curve. 

Data are representative of at least 3 independent experiments. 
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Figure 3.18 Weekly colonoscopy images in AOM-induced CRC treated with BUT. 

Induction of AOM CRC and treatment with resveratrol was performed as described in 

Figure 3.17 legend.  (A) Representative colonoscopies are shown from experimental 

groups which included Naïve (n=4), BUT (n=4), AOM (n=4), AOM+BUT (n=4) at 

weeks 1, 3, 5, and 7. Bar graphs depict colonoscopy scores (described in Materials and 

Methods) for experimental groups at week 1(B), week 3 (C), week 5 (D), and week 7 (E). 

Significance (p-value: *<0.05, **<0.01, ***<0.005, ****<0.001) was determined by 

using one-way ANOVA followed by Tukey’s post-hoc multiple comparisons test for 

depicted bar graphs. 
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Figure 3.19 T cell phenotyping in MLN of AOM-induced CRC mice treated with 

BUT. Induction of AOM CRC and treatment with resveratrol was performed as described 

in Figure 3.17legend.  Representative flow cytometry histograms and dot plots are 

depicted for the following T cell subsets: CD3+ (A), CD3+CD4+CD8+ (B), 

CD4+FOXP3+ (C), CD4+IL10+ (D) and CD4+IFNγ+ (E), and CD4+IL-17+ (F). For 

Figures C-F, cells were gated on CD4+ population. Data are representative of at least 3 

independent experiments. 
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Figure 3.20 T cell phenotyping in spleen of AOM-induced CRC mice treated with 

BUT. Induction of AOM CRC and treatment with resveratrol was performed as described 

in Figure 3.17 legend.  Flow cytometry dot plots and quantitative bar graphs depicting 

absolute cell numbers are shown respectively for the following T cell subsets: CD3+ (A-

B), CD4+ or CD8+ cells (C-E), CD4+FOXP3+ (F-G), CD4+IL10+ (H-I) and 

CD4+IFNγ+ (J-K), and CD4+IL-17+ (L-M) expressing cells. For Figures F-M, cells were 

gated on CD4+ population. Each experimental group had at least 5 mice included, and 

significance (p-value: *<0.05, **<0.01, ***<0.005, ****<0.001) was determined for 

absolute cell numbers by using one-way ANOVA followed by Tukey’s post-hoc multiple 

comparisons test. Data are representative of at least 3 independent experiments. 
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Figure 3.21 16S rRNA sequencing analysis during AOM-induced CRC treated with 

BUT. AOM induction and treatment with BUT were performed as described in Figure 

3.17 legend.  Gut microbiota samples were collected from experimental groups by 

performing colonic flushes in experimental groups, which were: Naïve (n=5), BUT 

(n=5), AOM (n=5), and AOM+BUT (n=5).  Nephele analysis (nephele.niaid.nih.gov) 

was used to generate charts for chao1 alpha diversity (A) and PCA beta diversity (B). 

LeFSe analysis of the Nephele OTU output files generated the cladogram (C) and LDA 

score bar graph (D). (E) OTU percent abundances are shown in bar graphs for the species 

Ruminococcus gnavus and Akkermansia muciniphila.  (F) PCR validation of 

Ruminococcus gnavus and Akkermansia muciniphila. Significance (p-value: *<0.05, 

**<0.01, ***<0.005, ****<0.001) was determined by using one-way ANOVA followed 

by Tukey’s post-hoc multiple comparisons test for depicted bar graphs. Experiments are 

representative of 3 independent experiments. 
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Figure 3.22 Significantly altered bacteria in AOM-induced CRC sample treated 

with BUT at the phylum level. Induction of AOM CRC and treatment with resveratrol 

was performed as described in Figure 3.17 legend, and 16S rRNA sequencing was 

performed as described in Figure 3.21 legend. Significance (p-value: *<0.05, **<0.01, 

***<0.005, ****<0.001) was determined by using one-way ANOVA followed by 

Tukey’s post-hoc multiple comparisons test in bar graphs. Experiments are representative 

of at least 3 independent experiments. 
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Figure 3.23 Significantly altered bacteria in AOM-induced CRC sample treated 

with BUT at the class level. Induction of AOM CRC and treatment with resveratrol was 

performed as described in Figure 3.17legend, and 16S rRNA sequencing was performed 

as described in Figure 3.21 legend. Significance (p-value: *<0.05, **<0.01, ***<0.005, 

****<0.001) was determined by using one-way ANOVA followed by Tukey’s post-hoc 

multiple comparisons test in bar graphs. Experiments are representative of at least 3 

independent experiments. 
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Figure 3.24 Significantly altered bacteria in AOM-induced CRC sample treated 

with BUT at the order level. Induction of AOM CRC and treatment with resveratrol 

was performed as described in Figure 3.17 legend, and 16S rRNA sequencing was 

performed as described in Figure 3.21 legend. Significance (p-value: *<0.05, **<0.01, 

***<0.005, ****<0.001) was determined by using one-way ANOVA followed by 

Tukey’s post-hoc multiple comparisons test in bar graphs. Experiments are representative 

of at least 3 independent experiments. 
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Figure 3.25 Significantly altered bacteria in AOM-induced CRC sample treated 

with BUT at the family level. Induction of AOM CRC and treatment with resveratrol 

was performed as described in Figure 3.17 legend, and 16S rRNA sequencing was 

performed as described in Figure 3.21 legend. Significance (p-value: *<0.05, **<0.01, 

***<0.005, ****<0.001) was determined by using one-way ANOVA followed by 

Tukey’s post-hoc multiple comparisons test in bar graphs. Experiments are representative 

of at least 3 independent experiments. 
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Figure 3.26 Significantly altered bacteria in AOM-induced CRC sample treated 

with BUT at the genus level. Induction of AOM CRC and treatment with resveratrol 

was performed as described in Figure 3.17 legend, and 16S rRNA sequencing was 

performed as described in Figure 3.21 legend. Significance (p-value: *<0.05, **<0.01, 

***<0.005, ****<0.001) was determined by using one-way ANOVA followed by 

Tukey’s post-hoc multiple comparisons test in bar graphs. Experiments are representative 

of at least 3 independent experiments. 
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Figure 3.27 Resveratrol and BUT dose-dependently increase Tregs in vitro. Whole 

splenocytes (seeded at 1 x 106 cells/ml) from 8-10 week old C57BL/6 mice were 

activated using CD3 (.5µg/ml) and CD28 (2µg/ml) in the absence or presence of 

appropriate vehicle control, resveratrol (5, 10, or 25µM), or BUT (1, 5, or 10mM). After 

24 hours, cells were fixed and stained with antibodies to identify percentages of Tregs 

(CD4+FoxP3+). Plots are representative flow dot plots for vehicle control and the various 

doses of RES and BUT gated on the CD4 population. A total of 3 independent wells 

(n=3) were used for each group and the data is representative of 2 independent 

experiments. 
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Figure 3.28 Treatment with Resveratrol and BUT leads to HDAC suppression. 

Whole splenocytes (seeded at 1 x 106 cells/ml) from 8-10 week old C57BL/6 mice were 

activated using CD3 (.5µg/ml) and CD28 (2µg/ml) in the absence or presence of 

appropriate vehicle control, resveratrol (5, 10, or 25µM), or BUT (1, 5, or 10mM). Tregs 

were identified by flow cytometry as represented in Figure 3.27. (A) Treg percentages 

after treatment with various doses of resveratrol. (B) Treg percentages after treatment 

with varying doses of BUT. Fold change expression as assessed by PCR for HDAC I (C) 

and HDAC II (D) after treatment with resveratrol (25µM). Fold change expression as 

assessed by PCR for HDAC I (E) and HDAC II (F) after treatment with BUT (5mM). 

Expression of HDAC I (G) and HDAC II (H) was evaluated from MLNs isolated from 

experimental groups (Naive, Resveratrol, AOM, and AOM+Resveratrol). Expression of 

HDAC I (I) and HDAC II (J) was evaluated from MLNs isolated from experimental 

groups (Naive, BUT, AOM, and AOM+BUT). For in vitro experiments, each group 

consisted of 3 wells (n=3), and the data are representative of 2 independent experiments. 

For in vivo experiments, each group consisted of 5 mice (n=5), and the data is 

representative of at least 3 independent experiments.Significance (p-value: *<0.05, 

**<0.01, ***<0.005, ****<0.001) was determined by using one-way ANOVA followed 

by Tukey’s post-hoc multiple comparisons test for depicted bar graphs. 
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Figure 3.29 Human CRC patient survival correlated with gene expression. TCGA 

datasets for colorectal cancer from The Cancer genome Atlas maintained at (TCGA, 

https://cancergenome.nih.gov/) were used to correlate gene expression with patient 

survival over a 5-year period or more. Correlations to patient survival were performed 

based on the following gene expressions: (A) FoxP3, (B) IL-10, (C) TGF-β, (D) IL-17A, 

(E) ROR-γt, (F) ROR-γt (past five year interval), (G) IFN-γ, and (H) Tbx21.  Kaplan-

Meier survival curves, defined as the probability of survival in a given length of time 

while considering time in many small intervals, were used to generate survival curves 

plots. 

https://cancergenome.nih.gov/
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CHAPTER 4 

RESVERATROL DOWNREGULATES MIR-31 TO PROMOTE CD4+FOXP3+ T 

REGULATORY CELLS DURING PREVENTION OF TNBS-INDUCED COLITIS

4.1 ABSTRACT 

Colitis, an inflammatory bowel disease, is associated with aberrant regulation of 

the colonic mucosal immune system. Resveratrol, a natural plant product, has been found 

to exert anti-inflammatory properties and attenuate the development of murine colitis. In 

the current study, we examined the role of microRNA (miR) in the ability of resveratrol 

to suppress colonic inflammation. Resveratrol treatment of mice bearing TNBS-induced 

colitis improved the overall clinical scores by reversing weight loss and colitis-associated 

pathogenesis. Flow cytometric analysis of the mesenteric lymph nodes (MLNs) 

demonstrated that resveratrol reduced colitis-associated induction of inflammatory T cells 

(Th17 and Th1) while increasing CD4+Foxp3+ regulatory T cells (Tregs) and IL-10-

producing CD4+ T cells.  miR microarray analysis and PCR validation from CD4+ cells 

isolated from MLN showed that treatment with resveratrol decreased the expression of 

several miRs (miR-31, Let7a, miR-132) that targeted cytokines and transcription factors 

involved in anti-inflammatory T cell responses (Foxp3 and TGF-β). Transfection studies 

with FoxP3-targeting miR-31 mimic or inhibitors confirmed that this miR directly 

regulated the expression of Foxp3.  Analysis of data from human patients with ulcerative 

colitis (UC) revealed that miR-31 expression was significantly increased when compared 

to controls and additionally, this miR was highly induced in UC colon biopsies that 
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exhibited colon cancer-associated neoplastic lesions. Together, the current study 

demonstrates resveratrol-mediated attenuation of colitis may be regulated by miR-31 

through induction of Foxp3+ Tregs and that miR-31 may serve as a therapeutic target for 

human colitis. 

4.2 INTRODUCTION 

 Previously, we have shown that treatment with resveratrol, a natural product 

found in a variety of plant products (Busbee et al., 2013), is able to lessen disease burden 

in chemical (dextran sodium sulfate, DSS) and genetic (IL-10 knockout) models of colitis 

(Singh et al., 2010; Singh et al., 2012), as well as colitis-associated colon cancers 

(Altamemi et al., 2014; Cui et al., 2010). A current review by Nunes et al. highlights 

findings from our lab as well as others showing the effectiveness of resveratrol in 

ameliorating or preventing animal models of colitis (Nunes et al., 2018). One of the key 

findings from our previous report in the colitis-associated tumorigenesis model was that 

resveratrol was able to regulate several microRNAs (miRs) that modulated inflammatory 

genes and factors (Altamemi et al., 2014). This was a significant finding because miRs, 

small non-coding RNA molecules that target and regulate gene transcripts (Guo et al., 

2018), were found to be important in both the development and progression of colitis, 

particularly in terms of regulating inflammation, serving as disease biomarkers, and 

responding to therapies (Feng et al., 2018; Lopetuso et al., 2018; Minacapelli et al., 2019; 

Morilla et al., 2018; Schonauen et al., 2018; Singh et al., 2014a). The importance of miRs 

in regulating colitis was highlighted in our previous report showing that deficiency in 

only one miR (miR-155) was able to protect mice from developing severe colitis 
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symptoms by a reduction in the inflammatory T helper (Th) type responses (Singh et al., 

2014a). 

In the current report, we investigated the effectiveness of resveratrol treatment in 

another mouse model of chemically-induced colitis, using 2,4,6-Trinitrobenzenesulfonic 

acid solution (TNBS), which is known to activate inflammatory T cells. We found that 

resveratrol treatment attenuated severe disease development, resulting in a shift from a 

pro-inflammatory Th17 phenotype to a more anti-inflammatory T cell response 

characterized by increased regulatory T cells (Tregs) and those producing IL-10. 

Microarray analysis of miR profiles in T cells revealed several miRs (e.g. miR-31, Let-

7a, and miR-132) that target anti-inflammatory T cell factors were downregulated by 

resveratrol. In this study we further analyzed the role of miR-31, which was found to 

target Treg transcription factor FoxP3. These findings were even more interesting after 

analysis of human UC colitis patients revealed this patient population had significantly 

higher expression of miR-31 in disease-associated tissues. Altogether, the study 

highlights that miR-31 is a potential target for prevention of colitis and possibly CRC. 

4.3 MATERIALS AND METHODS 

Animals. Female mice (BALB/c) aged 8-10 weeks were obtained from Jackson 

Laboratories (Bar Harbor, ME) and housed at the University of South Carolina, School of 

Medicine (Columbia, SC) AAALAC-accredited animal facility. All mice were housed in 

specific pathogen (SPF) free conditions in rooms with controlled temperature, ventilation, 

and normal light/dark cycles. All procedures performed on mice followed National 

Institutes of Health (NIH) guidelines under protocols approved by the Institutional 

Animal Care and Use Committee (IACUC). 
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Induction of colitis and treatment with resveratrol. Colitis was induced in 

experimental mice as previously described (Elson et al., 1996). Briefly, TNBS purchased 

from Sigma-Aldrich (MO, USA) was administered by intrarectal injection using a 38 mm 

catheter into lightly anesthetized (5% isoflurane) at a concentration of 1 mg TNBS 

dissolved in 0.1 ml of ethanol (50%). Mice were keep upright for 30 seconds following 

injection to ensure proper dispersion of the chemical into the colon area. Vehicle control 

mice were given an injection of 0.1 ml of ethanol (50%) without TNBS to negate any 

inflammatory or adverse effects caused by the alcohol. Resveratrol, purchased from 

Sigma-Aldrich, was given 24 hours prior to TNBS injection and given daily until 

completion of the experiment (5 days) by using a 30 mm oral gavage needle at a dose of 

100 mg/kg in 0.1ml of vehicle (1% carboxymethyl cellulose, CMC). In the current study, 

the following experimental groups were used:  Control mice (Vehicle) were given 50% 

ethanol intrarectal administration and daily oral gavage of vehicle (1% CMC); Naïve 

mice given treatment (Resveratrol) were given intrarectal administration of 50% ethanol 

and daily oral gavage of 100 mg/kg of the resveratrol. Disease controls (TNBS+Veh) 

were given 1mg intrarectal administration of TNBS and daily oral gavage of vehicle (1% 

CMC). Treatment groups (TNBS+Res) were given 1mg intrarectal administration of 

TNBS and daily oral gavage of resveratrol (100 mg/kg). 

Assessment of disease parameters. To assess disease, experimental mice were 

weighed daily through the entirety of the experiment (5-6 days). Colonoscopies were 

performed to evaluate extent of damage (ulcerations and bleeding) to the colons prior to 

the end of the experiment (day 3). At the study endpoint, mice were euthanized by 

overdose of isoflurane. Excised colons were measured for length and proximal colons 
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sections (1cm) were collected for histology. 10% formalin fixed tissues were stained with 

hematoxylin and eosin (H&E) to assess colonic damage caused by TNBS administration. 

To assess T cell response to disease and treatment, flow cytometry was performed on 

single cell suspensions isolated from MLNs and stained using antibodies for the 

following T cell and T cell subsets: overall T cells (CD3+), T helper cells (CD4+), 

cytotoxic T cells (CD8+), Tregs (CD4+FoxP3+), IL-10 producing cells (CD4+IL-10+), 

Th17 cells (CD4+IL-17+), and Th1 cells (CD4+IFNγ+). All antibodies used in these 

studies were purchased from BioLegend (CA, USA). For transcription factor staining, 

True-Nuclear Transcription Factor Buffer set from BioLegend was used as per 

instructions from the manufacturer. 

Analysis of miRNA. MicroRNA arrays were performed on RNA isolated from 

cells collected from the MLN of experimental mice as previously described (Miranda et 

al., 2018). Each sample consisted of a pool of 5 biological replicates. For each miRNA 

microarray, FlashTag Biotin HSR RNA Labeling kit from Affymetrix (Thermo Fisher 

Scientific, MA, USA) was used and tagged samples were later hybridized to the 

Affymetrix miRNA 4.0 chip. Chips were scanned with an Affymetrix GCS 3000 system. 

For transcriptome microarrays, 100ng total RNA was used as starting material. RNA was 

prepared for hybridization by using the Affymetrix GeneChip WT PLUS Reagent Kit 

according to protocol from the manufacturer. Affymetrix Expression Console Version 

software was used to evaluate quality control of the samples, as well as initial analysis of 

the microarray data to include principal component analysis, heatmaps depicting raw 

signal expression, log2 fold change (FC) calculations, and direct comparisons among the 

experimental groups. Ingenuity Pathway Analysis (IPA, http://www.ingenuity.com/) was 
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used to generate miRNA-gene target pathways based on differentially regulated miRNA 

profiles, which was determined to be a greater than ±2 log2 fold change between two 

different experimental groups. miR validation studies were performed by first preparing 

complimentary DNA (cDNA) from isolated RNA samples using the miScript II RT kit 

(Qiagen, MD, USA) followed by quantitative real time PCR (qRT-PCR) using a CFX 

Connect Real Time System (Bio-Rad, PA, USA). PCR reactions were performed using 

mouse-specific miR primers purchased from Qiagen. Primers included mmu-miR-31-5p 

(MI0000579), mmu-Let-7a (MIMAT0004620), and mmu-miR-132-3p 

(MIMAT0000144). Expression levels were normalized to Snord96a (MS00033733) 

levels. Fold changes were calculated using the 2−ΔΔCT method. 

Transfection experiments with miR-31-5p mimic or inhibitor and target gene 

quantification. Transfection experiments were carried out as previously described 

(Alghetaa et al., 2018; Busbee et al., 2015). Excised MLNs from naïve BALB/c were 

prepared in a single cell suspension before culturing in complete RPMI 1640 media 

supplemented with heat inactivated 10% fetal bovine serum, 10mM L-glutamine, 10mM 

HEPES, 50µM β-mercaptoethanol, and 100µg/ml penicillin/streptomycin. MLN cells 

were seeded (2 x 105 cells per well) in a 24-well plate and activated with 1 µg/ml of 

bacterial toxin staphylococcal enterotoxin B (SEB) purchased from Toxin Technologies 

Inc. (FL, USA). Cells were then transfected with either 20nM of synthetic mmu-miR-31–

5p mimic (AGGCAAGAUGCUGGCAUAGCUG) or anti-mmu-miR-31–5p 

(AGGCAAGAUGCUGGCAUAGCUG) using HiPerfect Transfection Reagent from 

Qiagen for 24 hours. Expression levels for miR-31 and transcriptional factor FoxP3 

(forward: CCCATCCCCAGGAGTCTTG; reverse: ACCATGACTAGGGGCACTGTA) 
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were determined using qRT-PCR. For FoxP3, expression levels were normalized to β 

actin (forward: GGCTGTATTCCCCTCCG; reverse: 

CCAGTTGGTAACAATGCCATGT). 

Dataset for human colitis patient population. Data on human miR-31 

expression levels was obtained from the National Center for Biotechnology Information 

(NCBI) Gene Expression Omnibus (GEO) repository. The human dataset used was GEO 

accession GSE68306 provided by Huang et al. and published elsewhere (Pekow et al., 

2017). The data set consisted of colon tissue biopsies from normal healthy controls 

(n=16) and ulcerative colitis (UC) patients (n=29). For UC patients, samples consisted of 

three distinct tissue biopsy types: UC associated with neoplastic tissues (n=11), UC 

patients without neoplasia (n=9), and non-dysplastic UC mucosa adjacent to a neoplastic 

lesion (n=9). For the current report, analysis was performed using two different 

comparisons. First, expression of miR-31 in healthy tissue samples (n=16) was compared 

to UC patients (n=29). Second, miR-31 expression from healthy controls (n=16) was 

compared to colonic tissues from UC patients associated with neoplasia (n=11). Raw 

expression values were obtained from the provided online dataset and based on 

NanoString nCounter v1.7.0 platform performed on RNA isolated from formalin-fixed 

paraffin embedded tissue samples. 

Statistical Analysis. GraphPad Prism software (CA, USA) was used for most of 

the statistical analysis depicted in the current report unless otherwise noted. For in vivo 

colitis experiments, at least 5 mice were used per experimental group. For in vitro assays, 

all experiments were performed in triplicate. For statistical differences, significance (p 
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value of ≤ 0.05) was determined using one-way ANOVA followed by Tukey’s post-hoc 

multiple comparisons test unless otherwise stated. 

4.4 RESULTS 

Treatment with resveratrol reduces severity of TNBS-induced colitis 

In the current study, we investigated the efficiency of resveratrol to prevent a 

chemically-induced murine colitis model using TNBS. To investigate prevention of 

disease by this natural compound, treatment groups were given resveratrol 24 hours prior 

to induction of disease by TNBS, followed by daily oral administrations of the treatment. 

As shown, colitis mice (TNBS+Veh) had significant weight loss (~15%) during the 

course of the study compared to control groups (Vehicle or Resveratrol), but colitis mice 

pre-treated with resveratrol (TNBS+Res) had significantly decreased incidence of weight 

loss (Fig. 1A-B). Another hallmark of many colitis models is the shortening of the colon 

after disease induction. The colons from TNBS mice were significantly shorter while 

TNBS+Res mice had similar colon lengths when compared to controls (Fig. 1C-D). 

Colonoscopies performed during the peak of disease (day 3) revealed that while TNBS 

mice had typical disease-associated features such as ulcerations and bleeding compared 

to normal colons, colons of TNBS+Res mice had reduced presence of these classical 

clinical parameters (Fig. 1E). Histological evaluation corroborated with these 

observations from colonoscopies as there were significant signs of tissue damage (e.g. 

cellular infiltration, loss of normal colonic tissue architecture) in TNBS mouse colons 

compared to controls, and this damage was not present or reduced in colons from 

TNBS+Res mice (Fig. 1F). These observations together demonstrated that resveratrol 

treatment effectively prevented TNBS-induced colitis. 
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Treatment of TNBS-induced colitis mice with resveratrol results in a shift 

from a pro-inflammatory to anti-inflammatory T helper response in MLN 

To investigate if this effect of resveratrol was due to reduction in pro-

inflammatory T helper responses (IL-17) while inducing anti-inflammatory types (Tregs 

and IL-10 production), MLNs from the TNBS experimental groups were evaluated to 

determine T cell distribution during disease and treatment. The T cell subsets evaluated 

included all T cells (Fig. 2A), T helper and cytotoxic T cells (Fig. 2B), Tregs (Fig. 2C), 

IL-10 T helper cells (Fig. 2D), and Th17 cells (Fig. 2E). Based on percentages obtained 

from flow cytometry phenotyping (Figs. 2A-E), absolute cell numbers were assessed in 

MLNs from all experimental groups. Overall T cells (Fig. 3A), including CD4+ T helper 

(Fig. 3B) and CD8+ cytotoxic (Fig. 3C), were significantly increased in TNBS+Veh mice 

compared to the other experimental groups, and TNBS+Res mice reduced these subsets 

to the levels seen in normal controls. Despite an overall increase in CD4+ T cells, there 

was a decrease in the anti-inflammatory Treg (Fig. 3D) and IL-10-producing (Fig. 2E) 

cells during TNBS induction, while colitis mice treated with resveratrol had significantly 

higher numbers of these anti-inflammatory subsets compared to controls. A significant 

proportion of the CD4+ T cell subsets in TNBS+Veh mice appeared to be pro-

inflammatory Th17 cells (Fig. 3F), and treatment with resveratrol during the disease state 

showed ablation of the increase in this T cell subset, comparable to control levels. Taken 

altogether, treatment with resveratrol appeared to prevent colitis-associated increases in 

pro-inflammatory Th17 cells, likely through the induction of anti-inflammatory subsets 

such as Tregs and CD4+ IL-10-producing cells. 
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Resveratrol treatment downregulates miRs that target Treg transcription 

factor FoxP3 and other anti-inflammatory T cell-associated factors 

Next, we investigated if miRs regulated the anti-inflammatory properties of 

resveratrol.  To that end, we investigated the miR profile of cells from the MLN. 

Principal component analysis (PCA) from pooled samples from all experimental groups 

showed that the miR profiles of controls (Vehicle and Resveratrol) were most similar 

with opposite deviations occurring when compared to TNBS+Veh and TNBS+Res 

groups (Fig. 4A). Direct comparisons among two groups at a time, with the significance 

criteria set to a ±2-fold change, revealed the greatest difference was among the 

TNBS+Veh vs. TNBS+Res groups (Fig. 4B). Comparison of these two groups showed 

260 total miRs (out of 3195 probed) were significantly altered, with TNBS+Res 

downregulating 198 and upregulating 62 compared to TNBS+Veh (Fig. 4C). A heatmap 

showing raw expression of these 260 significantly altered miRs for all experimental 

groups is depicted in Fig. 3D. IPA analysis of these 260 significantly altered miRs 

revealed several were downregulated in the TNBS+Res group that targeted key anti-

inflammatory T cell components such as FoxP3 (miR-31-5p, miR-182-5p, miR-210-3p), 

IL-10 (miR-146-a-5p and miR-27a-5p), TGFβ2/3 (miR132-3p, miR-1999a-5p, miR193a-

3p, miR-148a-3p, let-7a-3p, miR-29b-3p), and several SMAD proteins (miR-330-5p, 

miR-139-3p, miR-30c-1-3p*, miR-16-5p*, miR-27a-3p) (Fig. 5). Among these miRs 

targeting key anti-inflammatory T cell factors, miR-31, predicted to target FoxP3, was 

the most significantly downregulated (-6.790 fold change) when comparing TNBS+Res 

vs TNBS+Veh groups (Fig. 5). Thus, the microarray data suggested that treatment with 
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resveratrol was able to downregulate miRs that normally targeted anti-inflammatory gene 

expression and components. 

Resveratrol downregulates FoxP3-targeting miR-31 which is highly 

upregulated in human colitis patients  

As miR-31 was the most significantly downregulated miR indicated in targeting 

anti-inflammatory T cell response and factors, PCR was performed to validate the 

microarray results. Results showed that miR-31 was significantly increased in the MLN 

of TNBS+Veh mice compared to the control groups, whereas TNBS mice treated with 

resveratrol had decreased expression of this miRNA (Fig. 6A). Validation was also 

performed on other miRs highlighted in Fig. 5 to include let-7a (Fig. 6B) and miR-132 

(Fig. 6C). As with miR-31, results showed these miRs were increased in the disease state 

(TNBS+Veh), but treatment with resveratrol (TNBS+Res) prevented their disease-

associated upregulation. Next, alignment analysis was performed to determine the 

potential of FoxP3 being a target. miR-31 was found to have three potential binding sites 

on the 3’-untranslated region (UTR) of the FoxP3 transcript, two of which had highly-

probable miR-target mRNA interactions as predicted by mirSVR and PhastCons scores 

(Fig. 6D). Transfection experiments were performed to determine if alterations in this 

miR affected FoxP3 expression by giving SEB-activated T cells from the MLN either 

mock (just transfection reagent), miR-31-mimic, or miR-31-inhibitor. PCR validation of 

miR-31 expression showed the transfection was successful (Fig. 6E), and the results 

indicated that when miR-31 was upregulated (miR-mimic), expression of FoxP3 

transcript was downregulated (Fig. 6F). On the contrary, if miR-31 was inhibited, as in 

the case of treatment with resveratrol, then FoxP3 expression was increased. Collectively, 
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these data showed that FoxP3 expression was altered by miR-31, a diseased-associated 

miR that resveratrol treatment prevented from becoming upregulated. Lastly, as the 

TNBS-induced model indicated FoxP3-targeting miR-31 was a potential target in this 

murine model of colitis, human studies looking at miR expression in colon biopsies of 

UC patients was investigated to determine any applicable correlation between this animal 

model and the human patient population. As shown, miR-31 was found to be 

significantly increased in patients with UC when compared to controls (Fig. 6G). 

Interestingly enough, this upregulation of miR-31 was found to be even more significant 

in UC colon biopsies that developed colon cancer-associated neoplastic lesions when 

compared to healthy controls (Fig. 6H). These data provided a link with observed miR-31 

upregulation in the mouse model of colitis and human UC patient population, which 

resveratrol was able to prevent, effectively inhibiting miR-31 from targeting anti-

inflammatory FoxP3-mediated response. 

4.5 DISCUSSION 

 Previous studies have shown resveratrol is capable of preventing or at least 

reducing symptoms associated with animal models of colitis by a variety of different 

mechanisms. For example, in our earliest reports in the DSS-induced model of colitis, we 

showed resveratrol upregulated silent mating type information regulation-1 (SIRT-1) and 

downregulating nuclear transcription factor-kappaB (NF-κB) in immune cells (Singh et 

al., 2010). In a more recent report by Zhang et al., researchers confirmed our results that 

resveratrol treatment in the DSS model upregulated SIRT-1 in addition to mechanistic 

target of rapamycin (mTOR), while also downregulating other pro-inflammatory factors 

(e.g. autophagy‑related 12, Beclin‑1, and microtubule‑associated protein light chain 3 II) 
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(Zhang et al., 2019). As in this report, Yao et al. showed resveratrol effectively regulated 

Treg/Th17 signaling during DSS-induced colitis via modulating hypoxia inducible factor 

(HIF)-1α/mammalian target of rapamycin (mTOR) signaling pathways (Yao et al., 2015). 

In another chemically-induced colitis model in rats using oxazolone, resveratrol treatment 

was shown to exert anti-inflammatory and pro-apoptotic properties by inhibiting 

myeloperoxidase (MPO) and sphingosine kinase 1 (SphK1) (Abdin, 2013). In fact, the 

success of resveratrol treatment in animal models of colitis translates even into the human 

patient population. A double-blinded, placebo-controlled pilot study in UC patients has 

shown that supplementation of 500mg/kg of resveratrol for 6 weeks appears to improve 

quality of life and partially reduce disease severity in this patient population, thought to 

be due to the ability of this natural product to reduce oxidative stress (Samsami-Kor et 

al., 2015; Samsamikor et al., 2016). In addition to the growing number of studies 

identifying resveratrol as a potential preventative and therapeutic against colitis and even 

CRC, there are a number of reports linking dysregulation in miRs possible mechanisms 

which drive disease development and progression. 

 As early as a decade ago, reports highlighted the differential expression of certain 

miRs in patients with colitis (UC and CD) and CRC (Ahmed et al., 2009; Takagi et al., 

2010; Wu et al., 2008). In one of the earliest animal model reports, Chen et al. identified 

miR-155 was altered in activated CD4+ cells from TNBS-induced colitis mice (Chen et 

al., 2010), which supported our previous report showing miR-155 deficient mice had 

protection against colitis induction (Singh et al., 2014a). Since these early reports, the 

role of miR dysregulation in colitis is becoming more established from both a potential 

diagnostic tool to areas of therapeutic intervention. For example, a recent published 
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report suggest that serum levels of miR-146-5p are a better diagnostic tool to evaluate UC 

and CD severity than the standard C-reactive protein levels (Chen et al., 2019). miR-449a 

was suggested to be a possible predictor of colitis-associated CRC progression (Feng et 

al., 2018). Going beyond just diagnostic and biomarkers of disease, miRs are being 

looked as potential promoters and inhibitors of colitis as well. miR-590-5p, via inhibition 

of Yes-associated protein 1 (YAP), was shown to reduce intestinal inflammation in both 

colon cancer cells and mouse models of colitis with significant correlations in intestinal 

tissues from CD patients (Yu et al., 2018). An antagomir for miR-148a was reported to be 

a potentially effective drug treatment in amelioration of colitis because of its ability to 

selectively deplete the pro-inflammatory Th1 response without interrupting other 

protective immunological function during chronic colitis (Maschmeyer et al., 2018). The 

current report advances previous studies on miRs by demonstrating that miR-31 is a 

potential therapeutic target in colitis and CRC prevention. 

 The current study identifies the miR-31/FoxP3 axis as a means to prevent colitis 

development, showing this miR was significantly upregulated in the TNBS-induced 

murine model of colitis as well as documented in a dataset of UC colitis patients. In 2011, 

researchers reported that miR-31 was found to be highly dysregulated in epithelial cells 

from chronically inflamed mouse colons and APC(Min/+) tumors (Necela et al., 2011), 

and in that same year a report described how miR-31 increase correlated with chronic 

inflammation in IBD developing into neoplasia (Olaru et al., 2011). However, while 

many reports identify miR-31 as being abnormally high in colitis patients and animal 

models of colitis, the exact role of this miR in disease progression and development is 

somewhat controversial.   
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 Liu et al. found that colon epithelial-specific deletion of miR-31 resulted in a more severe 

form of colitis-associated colorectal cancer than wild-type counterparts (Liu et al., 2017), 

and another report suggested that overexpression of miR-31 in UC targeted and regulated 

the pro-inflammatory IL-13 signaling (Gwiggner et al., 2018). These reports align with 

other studies suggesting miR-31 is important in protecting against colitis by way of 

engaging mucosal healing processes during inflammatory events within the colon (Tian 

et al., 2019; Whiteoak et al., 2018). It is important to note that such findings do not 

necessarily contradict our data suggesting resveratrol-mediated targeting of miR-31 

assists in prevention of colitis. Such reports indicated miR-31 seemed to be protective in 

epithelial cells, whereas our report shows that in CD4+ immune cells, downregulating 

miR-31 helps initiate a potential anti-inflammatory Treg response. Thus, while 

upregulation of miR-31 in colonic epithelial cells might serve a protective role, in 

immune cells it has the potential to promote inflammation by reducing Treg 

development. This highlights the need to better understand through additional research 

how regulating miRs in different cell types might have varying consequences. 

Nevertheless, the current study provides evidence for additional pathways through which 

resveratrol offers a highly valuable preventative and therapeutic properties against colitis 

and possibly colitis-associated CRC. 
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Figure 4.1 Treatment with resveratrol reduces clinical parameters in TNBS-induced 

colitis.  BALB/c mice were injected intrarectally with 1mg of TNBS to induce colitis. 

Mice treated with resveratrol were given 100mg/kg in vehicle (1% CMC) by oral gavage 

24 hours prior to the TNBS injection as well as daily up until the experimental end point 

(day 4). Experimental groups consisted of: Vehicle (n=5), Resveratrol (n=5), TNBS+Veh 

(n=5), and TNBS+Res (n=5). Initial clinical parameters consisted of evaluating weight 

(A), percent weight loss (B) and colon length (C-D). (E) Representative colonoscopies 

are shown from experimental groups during peak of disease (day 3). (F) Representative 

colon sections from fixed and paraffin-embedded tissue sections stained with H&E at 20x 

objective. Significance (p-value: *<0.05, **<0.01, ***<0.005, ****<0.001) was 

determined by using one-way ANOVA and post-hoc Tukey’s test for bar graphs and 

Mann-Whitney test for weight data. Data are representative of at least 3 independent 

experiments. 
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Figure 4.2 Treatment with resveratrol alters T cell subsets in the MLN of TNBS-

induced mice. TNBS disease and treatment with resveratrol were performed as described 

in Figure 4.1 legend. MLNs were excised from experimental groups (n=5 per 

experimental group), stained with T cell-specific antibodies, and analyzed by flow 

cytometry. Representative T cell subset staining by flow cytometry was as follows: (A) 

CD3+ positive histogram plot; (B) CD4+ and CD8+ dot plot; (C) CD4+-gated FoxP3+ 

dot plot; (D) CD4+-gated IL-10 dot plot; (E) CD4+-gated IL-17 dot plot. 
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Figure 4.3 Treatment with resveratrol increases absolute cell numbers of anti-

inflammatory T cell subsets in the MLN of TNBS-induced mice. TNBS disease and 

treatment with resveratrol were performed as described in Figure 4.1 legend. MLNs were 

excised from experimental groups (n=5 per experimental group), stained with T cell-

specific antibodies, and analyzed by flow cytometry (as represented in Figure 4.2). Bar 

graphs depict absolute cell numbers in MLN for all T cells (F), T helper cells (G), 

cytotoxic T cells ( H), Tregs (I), T helper producing IL-10 cells (J), and Th17  cells (K). 

Significance (p-value: *<0.05, **<0.01, ***<0.005, ****<0.001) was determined by 

using one-way ANOVA and post-hoc Tukey’s test for bar dot graphs. Data are 

representative of at least 3 independent experiments. 
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Figure 4.4 Treatment with resveratrol alters the miR profile in TNBS-induced 

colitis MLN.  TNBS disease and treatment with resveratrol were performed as described 

in Figure 4.1 legend. RNA from MLN of experimental groups was isolated for miR 

microarray analysis using the murine-specific Affymetrix miRNA 4.0 chip. Experimental 

groups (Vehicle, Resveratrol, TNBS+Veh, and TNBS+Res) consisted of pools of 5 mice 

per group. Affymetrix Expression Console Version software was used to generate the 

following comparisons: (A) 3D PCA plot comparing all experimental groups; (B) 

multiple bar graph comparisons depicting significantly altered upregulated and 

downregulated (± 2 fold change) miRs between two experimental groups; (C) scatter plot 

depicting 260 significantly upregulated (red dots) and downregulated (green dots) miRs 

out of 3195 total between TNBS+Res and TNBS+Veh; and (D) heat map depicting raw 

expression values of the 260 aforementioned miRs among the 4 different experimental 

groups. 

 

 

 

 

 



www.manaraa.com

 

117 

 
Figure 4.5 Treatment with resveratrol results in downregulation of several miRs 

that target anti-inflammatory T cell-associated factors.  TNBS disease and treatment 

with resveratrol were performed as described in Figure 4.1 legend. 260 significantly 

altered miRs between TNBS+Res vs. TNBS+Veh noted in Figure 4.3 legend were 

subjected to Ingenuity Pathway Analysis (IPA). Depicted is an IPA-generated interaction 

chart showing significantly altered miRs targeting factors associated with anti-

inflammatory T cell responses. Green colors represent downregulated miRs and Red 

colors represent upregulated miRs. The calculated fold changes between TNBS+Res and 

TNBS+Veh groups are depicted below each included miR.  Purple arrows indicate 

predicted, highly predicted, and experimentally-proven interactions of the miR with 

target mRNA shown. 
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Figure 4.6 Resveratrol prevents FoxP3-targeting miR-31 upregulation in TNBS-

induced colitis which correlates with miR-31 upregulation in human UC patients.  

TNBS disease and treatment with resveratrol were performed as described in Figure 4.1 

legend. RNA was isolated from MLN of Vehicle (n=5), Resveratrol (n=5), TNBS+Veh 

(n=5), and TNBS+Res (n=5) to validate expression levels of miR-31 (A), Let-7a (B), and 

miR-132 (C). (D) Predicted miR-31 and FoxP3 alignment sites (with mirSVR and 

Phastcon scores) were obtained from microrna.org. For transfection experiments, single-

cell suspensions from normal mouse MLN were seeded (1x105 cells per well) and 

activated with SEB (1µg/ml) for 24 hours before collecting total RNA from groups. 

Experimental groups consisted of transfection reagent only mock (n=5), miR-31 mimic 

(n=5), and miR-31 inhibitor (n=5). Depicted are PCR-generated expression fold changes 

for miR-31 (E) and FoxP3 (F). For human samples depicted, raw expression values of 

miR-31 from colonic biopsies were obtained from GEO data GSE68306. Two 

comparisons are depicted: (G) Normal Healthy controls (n=16) vs. all UC patients 

(n=29); and (H) Normal Healthy controls (n=16) vs. UC patients associated with 

neoplasia (n=11).  Significance (p-value: *<0.05, **<0.01, ***<0.005, ****<0.001) was 

determined by using one-way ANOVA and post-hoc Tukey’s test for bar dot graphs 

when comparing three or more groups. Data are representative of at least 3 independent 

experiments. For human datasets, significance was determined using an unpaired, two-

tailed t test. 
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CHAPTER 5 

SUMMARY AND CONCLUSION

Resveratrol, a natural polyphenol found in various food and beverage products 

such as grapes, peanuts, and wine, is a potent anti-inflammatory agent capable of 

preventing or reducing symptoms associated with colitis and colitis-induced CRC by a 

variety of mechanisms. Using well-established murine models of both colitis (TNBS) and 

CRC (AOM/DSS), results showed that resveratrol was able to prevent or greatly reduce 

the symptoms associated with these animal models, which is supported by previously 

published reports. Highlighted in this disseration is the ability of resveratrol to regulate 

the gut microbiome and induce epigenetic modifications (e.g. miRs and HDACs) to 

promote induction of anti-inflammatory T cell subset, Tregs (CD4+FoxP3+).  

In the microbiome, resveratrol promotes a microenvironment with increased 

production of SCFA butyrate, a suppressor of HDACS capable of inducing Tregs. In both 

the colitis model and CRC model, resveratrol was shown to alter the gut microbiome to 

favor butyrate production. In particular, in both disease models resveratrol decreased 

Bacteriodes acidifaciens and enriched Akkermansia muciniphilia and Ruminococcus 

gnavus species. Fecal transfer experiments provided evidence that the resveratrol-altered 

microbiome was directly responsible for the anti-inflammatory immune response and 

subsequent protection against colitis and CRC, a new and exiting finding not previously 

known. Interestingly, in addition to suppression of HDACs by increased butyrate 

production, resveratrol was shown to be able to suppress a majority of HDACs 
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independently of butyrate, and this directly correlated with increased Treg induction. In 

addition to alterations in  the microbiome leading to Treg-promoting HDAC suppression, 

resveratrol is capable of downregulating several miRs (miR-31, let-7a, and miR-132) that 

target Treg-related factors (FoxP3, SMAD proteins, STATs, and TGF-β). Transfection 

experiments confirmed that miR-31 downregulation by resveratrol increased Treg-related 

transcription factor FoxP3, which was a signficant finding considering that UC patients 

were shown to have increased expression of this particular miR.   

These new findings and mechanisms by which resveratrol regulates inflammation, 

which has the potential to promote cancer, provide additional evidence to suggest this 

natural compound can be a beneficial therapeutic or preventative measure against colitis 

and colitis associated CRC by way of induction of Tregs. The ability of resveratrol to 

induce Tregs is important not only because this T cell subset has anti-inflammatory 

properties, but also data presented here shows that increased Tregs correlate with 

increased survival of CRC patients. Inasmuch, the data and results presented here 

promote a strong case for this natural compound to be used as a safe alternative to treat 

and prevent colitis and CRC. 
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